Skip to main content

Modal Analysis

  • Chapter
  • First Online:
Machining Dynamics
  • 2287 Accesses

Abstract

Chapter 2 describes how to use modal analysis, or the study of a system’s dynamic properties in the frequency domain, to describe the tool point dynamics for tool-holder combinations. It first reviews the fundamentals of single and two degree of freedom free and forced vibrations to establish notation conventions for a description of modal analysis. The text then discusses frequency response functions, details a modal fitting technique for extracting modal parameters, and describes the experimental procedures and equipment used to measure tool point frequency response functions.

All these primary impulses, not easily described in words, are the springs of man’s actions.

—Albert Einstein

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The conductor is a conductive, nonmagnetic material. Aluminum and copper are common choices.

  2. 2.

    We observe that the cross FRF in Fig. 2.26 looks very different than the direct FRF in Fig. 2.21; the higher frequency mode is “upside down” in Fig. 2.26. As we saw in Sect. 2.4, this is because the two modes are out of phase for the cross FRF, which results in the sign change.

    Fig. 2.26
    figure 26

    Two degree of freedom cross FRF with the amplitudes required for model development identified

  3. 3.

    This \( \frac{1}{k} \) term can be referred to as the DC compliance.

References

  1. Schmitz, T., & Smith, K. S. (2012). Mechanical vibrations: Modeling and measurement. New York, NY: Springer.

    Book  Google Scholar 

  2. Thomson, W., & Dahleh, M. (1998). Theory of vibration with application (5th ed.). Upper Saddle River, NJ: Prentice Hall.

    Google Scholar 

  3. Weaver Jr., W., Timoshenko, S., & Young, D. (1990). Vibration problems in engineering (5th ed.). New York, NY: John Wiley and Sons.

    Google Scholar 

  4. Bae, J. S., Moon, K. K., & Inman, D. (2005). Vibration suppression of a cantilever beam using eddy current damper. Journal of Sound and Vibration, 284, 805–824.

    Article  Google Scholar 

  5. Ransom, T., Honeycutt, A., & Schmitz, T. (2016). A new tunable dynamics platform for milling experiments. Precision Engineering, 44, 252–256.

    Article  Google Scholar 

  6. Inman, D. (2001). Engineering vibration (2nd ed.). Upper Saddle River, NJ: Prentice Hall, Section 1.10.

    Google Scholar 

  7. Thomson, W., & Dahleh, M. (1998). Theory of vibration with application (5th ed.). Upper Saddle River, NJ: Prentice Hall, Section 3.9.

    Google Scholar 

  8. Leon, J. (1994). Linear algebra with applications (4th ed.). Englewood Cliffs, NJ: Prentice Hall, Section 5.6.

    Google Scholar 

  9. Ewins, D. (2000). Modal testing: theory, practice, and application (2nd ed.). London: Taylor & Francis.

    Google Scholar 

  10. Ganguly, V., & Schmitz, T. (2014). Phase correction for frequency response function measurements. Precision Engineering, 38, 409–413.

    Article  Google Scholar 

  11. Kim, H., & Schmitz, T. (2007). Bivariate uncertainty analysis for impact testing. Measurement Science and Technology, 18, 3565–3571.

    Article  Google Scholar 

  12. Jobson, J. (1992). Applied multivariate data analysis. New York, NY: Springer.

    Book  Google Scholar 

  13. Ridler, N., & Salter, M. (2002). An approach to the treatment of uncertainty in complex S-parameter measurements. Metrologia, 39, 295–302.

    Article  Google Scholar 

  14. Hall, B. (2004). On the propagation of uncertainty in complex-valued quantities. Metrologia, 41, 173–177.

    Article  Google Scholar 

  15. International Standards Organization (ISO). (1993). Guide to the expression of uncertainty in measurement (Corrected and Reprinted 1995).

    Google Scholar 

  16. Ashory, M. (1999). High quality modal testing methods. Ph.D. Dissertation, Imperial College of Science, Technology, and Medicine, London.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Appendices

Exercises

  1. 1.

    A harmonic motion has an amplitude of 0.2 cm and a period of 15 s.

    1. (a)

      Determine the maximum velocity (m/s) and maximum acceleration (m/s2) of the periodic motion.

    2. (b)

      Assume that the motion expresses the free vibration of an undamped single degree of freedom system and that the motion was initiated with an initial displacement and no initial velocity. Express the motion (in units of meters) in each of the following four forms:

      1. 1.

        A cos (ωnt + Φc).

      2. 2.

        A sin (ωnt + Φs).

      3. 3.

        B cos (ωnt) + C sin (ωnt).

      4. 4.

        \( D{\mathrm{e}}^{i\left({\omega}_{\mathrm{n}}t\right)}+E{\mathrm{e}}^{-i\left({\omega}_{\mathrm{n}}t\right)} \).

  2. 2.

    A single degree of freedom lumped parameter system under free vibration can be modeled with the following mass, stiffness, and damping values: m = 1 kg, k = 4 × 104 N/m, and c = 10 N s/m.

    1. (a)

      Determine the natural frequency, fn (Hz), and the damping ratio, ζ.

    2. (b)

      Given an initial displacement of 5 mm and an initial velocity of 0 mm/s, find an expression for the time response of the damped free vibration, x(t), of the form:

      $$ x(t)={\mathrm{e}}^{-{\zeta \omega}_{\mathrm{n}}t}\left(A\sin \left({\omega}_{\mathrm{d}}t\right)+B\cos \left({\omega}_{\mathrm{d}}t\right)\right), $$

      where x(t) is expressed in meters. Plot the first 25 cycles of motion.

  3. 3.

    A single degree of freedom lumped parameter system has mass, stiffness, and damping values of 1.2 kg, 1 × 107 N/m, and 364.4 N s/m, respectively. Generate the following plots of the frequency response function:

    1. (a)

      Magnitude (m/N) versus frequency (Hz) and phase (deg) versus frequency (Hz).

    2. (b)

      Real part (m/N) versus frequency (Hz) and imaginary part (m/N) versus frequency (Hz).

    3. (c)

      Argand diagram, real part (m/N) versus imaginary part (m/N).

  4. 4.

    For the two degree of freedom, damped lumped parameter system shown in Fig. 2.37, complete parts (a) through (f).

    ka = 2 × 105 N/m

    kb = 5.5 × 104 N/m

    ca = 60 N s/m

    cb = 16.5 N s/m

    ma = 2.5 kg

    mb = 1.2 kg

    x1(0) = 1 mm

    x2(0) = 0 mm

    \( {\dot{x}}_1(0)=0 \) mm/s

    \( {\dot{x}}_2(0)=0 \) mm/s

    Fig. 2.37
    figure 37

    Two degree of freedom, damped lumped parameter system

    1. (a)

      Obtain the equations of motion in matrix form and transform them into modal coordinates q1 and q2. Normalize your eigenvectors to coordinate x2. Verify that proportional damping exists.

    2. (b)

      Determine the time responses q1(t) and q2(t) in mm. Express your solutions in the form: \( {q}_{1,2}(t)={\mathrm{e}}^{-{\zeta}_{q1,2}{\omega}_{\mathrm{n}1,2}t}\left(A\cos \left({\omega}_{\mathrm{d}1,2}t\right)+B\sin \left({\omega}_{\mathrm{d}1,2}t\right)\right) \).

    3. (c)

      Transform the modal coordinate solutions, q1(t) and q2(t), back into local coordinates, x1(t) and x2(t).

    4. (d)

      Plot x1(t) and x2(t) (in mm) versus time (in seconds).

    5. (e)

      Determine the time responses x1(t) and x2(t) (in mm) if the initial velocities are zero and the initial displacements are x1(0) = 0.312 mm and x2(0) = 1 mm.

  5. 5.

    Assume that a harmonic force, f2 = f0eiωt, is applied to the lower mass (at coordinate x2) in Fig. 2.37. Obtain the FRFs \( \frac{Q_1}{R_1} \), \( \frac{Q_2}{R_2} \), and \( \frac{X_2}{F_2} \). Express them in equation form and then plot the real and imaginary parts (in m/N) versus frequency (in Hz).

  6. 6.

    For a single degree of freedom spring-mass-damper system under free vibration, determine the values for the mass, m (kg), viscous damping coefficient, c (N s/m), and spring constant, k (N/m), given the following information:

    • The damping ratio is 0.1.

    • The undamped natural frequency is 100 Hz.

    • The initial displacement is 1 mm.

    • The initial velocity is 5 mm/s.

    • If the system was critically damped, the value of the damping coefficient would be 586.1 N s/m.

  7. 7.

    For a single degree of freedom spring-mass-damper system with m = 2.5 kg, k = 6 × 106 N/m, and c = 180 N s/m, complete the following for the case of forced harmonic vibration:

    1. (a)

      Calculate the undamped natural frequency (in rad/s) and damping ratio.

    2. (b)

      Sketch the imaginary part of the system FRF versus frequency. Identify the frequency (in Hz) and amplitude (in m/N) of the key features.

    3. (c)

      Determine the value of the imaginary part of the vibration (in mm) for this system at a forcing frequency of 1500 rad/s if the harmonic force magnitude is 250 N.

  8. 8.

    Given the eigenvalues and eigenvectors for the two degree of freedom system shown in Fig. 2.38, determine the modal matrices mq (kg), cq (N s/m), and kq (N/m).

    $$ {\displaystyle \begin{array}{l}{s_1}^2=-1\times 1{0}^6\kern0.5em \mathrm{rad}/{\mathrm{s}}^2\\ {}{s_2}^2=-7\times 1{0}^6\kern0.5em \mathrm{rad}/{\mathrm{s}}^2\end{array}} $$
    $$ {\psi}_1=\left\{\begin{array}{c}0.5\\ {}1\end{array}\right\}\kern1em {\psi}_2=\left\{\begin{array}{c}-2.5\\ {}1\end{array}\right\} $$
  9. 9.

    Determine the mass, damping, and stiffness matrices in local coordinates for the model shown in Fig. 2.39.

  10. 10.

    For a single degree of freedom spring-mass-damper system subject to forced harmonic vibration, the measured FRF is displayed in Figs. 2.40 and 2.41. Using the peak picking method, determine m (in kg), k (in N/m), and c (in N s/m).

Fig. 2.38
figure 38

Two degree of freedom spring-mass-damper system

Fig. 2.39
figure 39

Three degree of freedom spring-mass-damper model

Fig. 2.40
figure 40

Measured FRF

Fig. 2.41
figure 41

Measured FRF (smaller frequency scale)

Appendix: Orthogonality of Eigenvectors

As described in Chap. 2, the orthogonality of eigenvectors with respect to the system mass and stiffness matrices is the basis for modal analysis. In general, we can say that two vectors are perpendicular if their scalar, or dot, product is zero. Consider the two vectors:

$$ \left[U\right]=\left\{\begin{array}{c}{u}_{11}\\ {}{u}_{21}\end{array}\right\}\kern1em \mathrm{and}\kern1em \left[V\right]=\left\{\begin{array}{c}{v}_{11}\\ {}{v}_{21}\end{array}\right\}. $$
(2.77)

Their dot product is:

$$ \left[U\right]\bullet \left[V\right]={\left[U\right]}^{\mathrm{T}}\left[V\right]=\left\{{u}_{11}\kern0.5em {u}_{21}\right\}\left\{\begin{array}{c}{v}_{11}\\ {}{v}_{21}\end{array}\right\}={u}_{11}\cdot {v}_{11}+{u}_{21}\cdot {v}_{21}. $$
(2.78)

This product is zero if the vectors are perpendicular. Orthogonality can be considered a generalization of the concept of perpendicularity.

From Chap. 2, we have seen that we can write the matrix form of the system equations of motion ([M]s2 + [K]){X}est = {0} if we assume harmonic vibration. We used the characteristic equation, |[M]s2 + [K]| = 0, to find the eigenvalues, s12 and s22. We then substituted the eigenvalues into either of the linearly dependent equations of motion to find the eigenvectors, or mode shapes. Using s12 =  − ωn12, we can write:

$$ \left(-\left[M\right]{\omega_{\mathrm{n}1}}^2+\left[K\right]\right)\left\{{\psi}_1\right\}=\left\{0\right\}, $$
(2.79)

where ψ1 is the corresponding mode shape. Equation 2.79 can be expanded to:

$$ -{\omega_{\mathrm{n}1}}^2\left[M\right]\left\{{\psi}_1\right\}+\left[K\right]\left\{{\psi}_1\right\}=\left\{0\right\}. $$
(2.80)

Premultiplying Eq. 2.80 by the transpose of the second mode shape ψ2, which corresponds to vibration at ωn2, yields:

$$ -{\omega_{\mathrm{n}1}}^2{\left\{{\psi}_2\right\}}^{\mathrm{T}}\left[M\right]\left\{{\psi}_1\right\}+{\left\{{\psi}_2\right\}}^{\mathrm{T}}\left[K\right]\left\{{\psi}_1\right\}=0. $$
(2.81)

Performing the transpose operation on Eq. 2.81 gives:

$$ -{\omega_{\mathrm{n}1}}^2{\left\{{\psi}_1\right\}}^{\mathrm{T}}\left[M\right]\left\{{\psi}_2\right\}+{\left\{{\psi}_1\right\}}^{\mathrm{T}}\left[K\right]\left\{{\psi}_2\right\}=0, $$
(2.82)

where the transpose properties ([A][B])T = [B]T[A]T and ([A]T)T = [A] (using matrices of appropriate dimensions) have been applied.

Completing the same operations using s22 =  − ωn22 gives:

$$ -{\omega_{\mathrm{n}2}}^2{\left\{{\psi}_1\right\}}^{\mathrm{T}}\left[M\right]\left\{{\psi}_2\right\}+{\left\{{\psi}_1\right\}}^{\mathrm{T}}\left[K\right]\left\{{\psi}_2\right\}=0. $$
(2.83)

Taking the difference of Eqs. 2.82 and 2.83 yields:

$$ \left({\omega_{\mathrm{n}2}}^2-{\omega_{\mathrm{n}1}}^2\right){\left\{{\psi}_1\right\}}^{\mathrm{T}}\left[M\right]\left\{{\psi}_2\right\}=0. $$
(2.84)

Provided ωn22 ≠ ωn12, then {ψ1}T[M]{ψ2} = 0. Substituting this result into either Eq. 2.82 or Eq. 2.83 gives {ψ1}T[K]{ψ2} = 0. Collecting these results, we obtain the orthogonality conditions shown in Eqs. 2.85 through 2.88.

$$ {\displaystyle \begin{array}{l}{\left\{{\psi}_1\right\}}^{\mathrm{T}}\left[M\right]\left\{{\psi}_2\right\}=0\\ {}{\left\{{\psi}_2\right\}}^{\mathrm{T}}\left[M\right]\left\{{\psi}_1\right\}=0\end{array}} $$
(2.85)
$$ {\displaystyle \begin{array}{c}{\left\{{\psi}_1\right\}}^{\mathrm{T}}\left[M\right]\left\{{\psi}_1\right\}={m}_{q1}\\ {}{\left\{{\psi}_2\right\}}^{\mathrm{T}}\left[M\right]\left\{{\psi}_2\right\}={m}_{q2}\end{array}}\kern1em \left(\mathrm{These}\ \mathrm{products}\ \mathrm{are}\ \mathrm{not}\ \mathrm{necessarily}\ \mathrm{zero}.\right) $$
(2.86)
$$ {\displaystyle \begin{array}{l}{\left\{{\psi}_1\right\}}^{\mathrm{T}}\left[K\right]\left\{{\psi}_2\right\}=0\\ {}{\left\{{\psi}_2\right\}}^{\mathrm{T}}\left[K\right]\left\{{\psi}_1\right\}=0\end{array}} $$
(2.87)
$$ {\displaystyle \begin{array}{c}{\left\{{\psi}_1\right\}}^{\mathrm{T}}\left[K\right]\left\{{\psi}_1\right\}={k}_{q1}\\ {}{\left\{{\psi}_2\right\}}^{\mathrm{T}}\left[K\right]\left\{{\psi}_2\right\}={k}_{q2}\end{array}}\kern1em \left(\mathrm{These}\ \mathrm{products}\ \mathrm{are}\ \mathrm{not}\ \mathrm{necessarily}\ \mathrm{zero}.\right) $$
(2.88)

Using the modal matrix, \( \left[P\right]=\left[{\psi}_1\kern0.5em {\psi}_2\right] \), and the orthogonality conditions we obtain the diagonalized modal mass and stiffness matrices:

$$ {\left[P\right]}^{\mathrm{T}}\left[M\right]\left[P\right]=\left[\begin{array}{cc}{\left\{{\psi}_1\right\}}^{\mathrm{T}}\left[M\right]\left\{{\psi}_1\right\}& {\left\{{\psi}_1\right\}}^{\mathrm{T}}\left[M\right]\left\{{\psi}_2\right\}\\ {}{\left\{{\psi}_2\right\}}^{\mathrm{T}}\left[M\right]\left\{{\psi}_1\right\}& {\left\{{\psi}_2\right\}}^{\mathrm{T}}\left[M\right]\left\{{\psi}_2\right\}\end{array}\right]=\left[\begin{array}{cc}{m}_{q1}& 0\\ {}0& {m}_{q2}\end{array}\right]=\left[{M}_q\right]\kern1em \mathrm{and} $$
(2.89)
$$ {\left[P\right]}^{\mathrm{T}}\left[K\right]\left[P\right]=\left[\begin{array}{cc}{\left\{{\psi}_1\right\}}^{\mathrm{T}}\left[K\right]\left\{{\psi}_1\right\}& {\left\{{\psi}_1\right\}}^{\mathrm{T}}\left[K\right]\left\{{\psi}_2\right\}\\ {}{\left\{{\psi}_2\right\}}^{\mathrm{T}}\left[K\right]\left\{{\psi}_1\right\}& {\left\{{\psi}_2\right\}}^{\mathrm{T}}\left[K\right]\left\{{\psi}_2\right\}\end{array}\right]=\left[\begin{array}{cc}{k}_{q1}& 0\\ {}0& {k}_{q2}\end{array}\right]=\left[{K}_q\right]. $$
(2.90)

These diagonal modal mass and stiffness matrices uncouple the equations of motion and enable the solution of independent single degree of freedom systems in modal coordinates. The individual modal contributions can then be transformed back into local (physical) coordinates as discussed in Chap. 2.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schmitz, T.L., Smith, K.S. (2019). Modal Analysis. In: Machining Dynamics. Springer, Cham. https://doi.org/10.1007/978-3-319-93707-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93707-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93706-9

  • Online ISBN: 978-3-319-93707-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics