Skip to main content

Temperature Dependence of Magnetic Characteristics

  • Chapter
  • First Online:
Dynamic Spin-Fluctuation Theory of Metallic Magnetism

Abstract

In this chapter we study spin-correlation effects in metals at finite temperatures. We start with qualitative estimates of the correlation effects on the magnitude and relaxation time of a single-site spin.

Don’t look for the meaning; look for the use. (Ludwig Wittgenstein)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This is simply the sum of squares of electronic spins in different orbital states, since in these conditions the mean value of the scalar product of spins of different electrons is zero. The same argument applies in the derivation of (13.11).

  2. 2.

    These results are valid only in the case of non-interacting electrons.

  3. 3.

    If detailed calculations of the generalized susceptibility χ(q, ω) were available, the Fourier-transform of correlator (13.21) could be obtained by only triple (rather than sixfold) integration over the Brillouin zone. Indeed, by the fluctuation-dissipation theorem (2.56), we have

    $$\displaystyle{ F(\omega ) \propto \coth (\beta \hslash \omega /2)\int \mathop{\mathrm{Im}}\chi (\mathbf{q},\omega )\,\mathrm{d}\mathbf{q}. }$$

    However, calculations of χ(q, ω) are usually given only in a few symmetrical directions of q (see, e.g. [7]), and so this formula cannot be used.

  4. 4.

    The function F(ω) is even.

  5. 5.

    Since the calculations with νkσ-dependent matrix element and with constant matrix element yield similar results, for brevity, we give numerical results only for the former case.

  6. 6.

    A similar expression can be obtained from the formula given in the footnote 3 using the Kramers-Kronig relation for ℏωk BT.

  7. 7.

    Use of the constant matrix element approximation is the same as setting the form-factor (3.28) to unity.

  8. 8.

    In the DSFT we use g 2μ B 2∕2 units. If we come back to g 2μ B 2 units, one can see that

    $$\displaystyle{\chi = \frac{\chi ^{0}} {1 - 2u\chi ^{0}},}$$

    and the Stoner constant I must be compared with u (see (4.32)).

  9. 9.

    Compare the results obtained in the DNA with those obtained in the SLA, where the intersite correlations are not taken into account at all.

References

  1. B.I. Reser, E.V. Rosenfeld, E.V. Shipitsyn, Phys. Met. Metallogr. 69(6), 48 (1990)

    Google Scholar 

  2. B.I. Reser, J. Phys. Condens. Matter 14, 1285 (2002)

    Article  ADS  Google Scholar 

  3. B.I. Reser, J. Phys. Condens. Matter 12, 9323 (2000)

    Article  ADS  Google Scholar 

  4. T. Moriya, Rep. Progr. Phys. 44(4), 329 (1981)

    Article  Google Scholar 

  5. T. Moriya, Spin Fluctuations in Itinerant Electron Magnetism (Springer, Berlin, 1985)

    Book  Google Scholar 

  6. D.M. Edwards, J. Magn. Magn. Mater. 36(3), 213 (1983)

    Article  ADS  Google Scholar 

  7. J.F. Cooke, J.W. Lynn, H.L. Davis, Phys. Rev. B 21, 4118 (1980)

    Article  ADS  Google Scholar 

  8. W. Kohn, N. Rostoker, Phys. Rev. 94(5), 1111 (1954)

    Article  ADS  Google Scholar 

  9. J.C. Slater, Phys. Rev. 51, 846 (1937)

    Article  ADS  Google Scholar 

  10. B. Segall, Phys. Rev. 105, 108 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  11. O. Jepson, O.K. Andersen, Solid State Comm. 9(20), 1763 (1971)

    Article  ADS  Google Scholar 

  12. V.I. Krylov, N.S. Skoblya, A Handbook of Methods of Approximate Fourier Transformation and Inversion of the Laplace Transformation (Mir Publ., Moscow, 1977)

    Google Scholar 

  13. V.L. Moruzzi, J.F. Janak, A.R. Williams, Calculated Electronic Properties of Metals (Pergamon, New York, 1978)

    Google Scholar 

  14. B.I. Reser, Phys. Status Solidi B 116, 31 (1983)

    Article  ADS  Google Scholar 

  15. B.I. Reser, L.M. Sandratskii, Phys. Met. Metallogr. 62(4), 66 (1986)

    Google Scholar 

  16. S. Chikazumi, Physics of Ferromagnetism, 2nd edn. (Clarendon, Oxford, 1997)

    Google Scholar 

  17. H. Hasegawa, J. Phys. F: Met. Phys. 13, 2655 (1983)

    Article  ADS  Google Scholar 

  18. P.J. Brown, H. Capellmann, J. Déportes, D. Givord, K.R.A. Ziebeck, J. Magn. Magn. Mater. 30, 243 (1982)

    Article  ADS  Google Scholar 

  19. J. Hubbard, Phys. Rev. B 19, 2626 (1979)

    Article  ADS  Google Scholar 

  20. J. Hubbard, Phys. Rev. B 20, 4584 (1979)

    Article  ADS  Google Scholar 

  21. O. Gunnarsson, J. Phys. F: Met. Phys. 6, 587 (1976)

    Article  ADS  Google Scholar 

  22. O. Gunnarsson, Physica 91B, 329 (1977)

    Google Scholar 

  23. U.K. Poulsen, J. Kollár, O.K. Andersen, J. Phys. F: Met. Phys. 6, L241 (1976)

    Article  ADS  Google Scholar 

  24. O.K. Andersen, J. Madsen, U.K. Poulsen, O. Jepsen, J. Kollár, Physica 86–88B, 249 (1977)

    Google Scholar 

  25. J.F. Janak, Phys. Rev. B 16, 255 (1977)

    Article  ADS  Google Scholar 

  26. U. von Barth, L. Hedin, J. Phys. C Solid State Phys. 5, 1629 (1972)

    Article  ADS  Google Scholar 

  27. O. Gunnarsson, B.I. Lundqvist, Phys. Rev. B 13, 4274 (1976)

    Article  ADS  Google Scholar 

  28. W. Kohn, P. Vashishta, in Theory of the Inhomogeneous Electron Gas, ed. by S. Lundqvist, N.H. March (Plenum, New York, 1983), pp. 79–147

    Chapter  Google Scholar 

  29. R.O. Jones, O. Gunnarsson, Rev. Mod. Phys. 61, 689 (1989)

    Article  ADS  Google Scholar 

  30. B.I. Reser, J. Magn. Magn. Mater. 258–259, 51 (2003)

    Article  ADS  Google Scholar 

  31. P.-W. Ma, S.L. Dudarev, Phys. Rev. B 86, 054416 (2012)

    Article  ADS  Google Scholar 

  32. P.J. Brown, H. Capellmann, J. Deportes, D. Givord, S.M. Johnson, J.W. Lynn, K.R.A. Ziebeck, J. Phys. (Paris) 46, 827 (1985)

    Article  Google Scholar 

  33. Y.I. Prokopjev, B.I. Reser, J. Phys. Condens. Matter 3, 6055 (1991)

    Article  ADS  Google Scholar 

  34. H. Capellmann (ed.), Metallic Magnetism (Springer, Berlin, 1987)

    Google Scholar 

  35. M. Shiga, in Physics of Transition Metals 1980 (Inst. Phys. Conf. Ser. No. 55), ed. by P. Rhodes (IOP, Bristol, 1981), p. 241

    Google Scholar 

  36. M. Shiga, J. Phys. Soc. Jpn. 50, 2573 (1981)

    Article  ADS  Google Scholar 

  37. A.J. Holden, V. Heine, J.H. Samson, J. Phys. F: Met. Phys. 14, 1005 (1984)

    Article  ADS  Google Scholar 

  38. H. Hasegawa, J. Phys. F: Met. Phys. 14, 1235 (1984)

    Article  ADS  Google Scholar 

  39. E.P. Wohlfarth, in Ferromagnetic Materials, vol. 1, ed. by E.P. Wohlfarth (North-Holland, Amsterdam, 1980), pp. 1–70

    Google Scholar 

  40. B.I. Reser, J. Phys. Condens. Matter 16, 361 (2004)

    Article  ADS  Google Scholar 

  41. B.I. Reser, Phys. Met. Metallogr. 97, 448 (2004)

    Google Scholar 

  42. B.I. Reser, Phys. Met. Metallogr. 103, 373 (2007)

    Google Scholar 

  43. P. James, O. Eriksson, B. Johansson, I.A. Abrikosov, Phys. Rev. B 59, 419 (1999)

    Article  ADS  Google Scholar 

  44. P. Mohn, Nature 400, 18 (1999)

    Article  ADS  Google Scholar 

  45. M. van Schilfgaarde, I.A. Abrikosov, B. Johansson, Nature 400, 46 (1999)

    Article  ADS  Google Scholar 

  46. P. Weinberger, L. Szunyogh, C. Blaas, C. Sommers, P. Entel, Phys. Rev. B 63, 094417 (2001)

    Article  ADS  Google Scholar 

  47. P. Brown, K.U. Neumann, K.A. Ziebeck, J. Phys. Condens. Matter 13(7), 1563 (2001)

    Article  ADS  Google Scholar 

  48. J.P. Rueff, A. Shukla, A. Kaprolat, M. Krisch, M. Lorenzen, F. Sette, R. Verbeni, Phys. Rev. B 63, 132409 (2001)

    Article  ADS  Google Scholar 

  49. R.M. White, Quantum Theory of Magnetism, 3rd edn. (Springer, Berlin, 2007)

    Book  Google Scholar 

  50. C.P. Slichter, Principles of Magnetic Resonance, 3rd edn. (Springer, Berlin, 1990)

    Book  Google Scholar 

  51. J. Korringa, Physica 16, 601 (1950)

    Article  ADS  Google Scholar 

  52. Y. Obata, J. Phys. Soc. Jpn. 18, 1020 (1963)

    Article  ADS  Google Scholar 

  53. Y. Yafet, V. Jaccarino, Phys. Rev. 133, A1630 (1964)

    Article  ADS  Google Scholar 

  54. T. Moriya, J. Phys. Soc. Jpn. 19, 681 (1964)

    Article  ADS  Google Scholar 

  55. V.J. N. Kaplan, J.H. Wernick, Phys. Rev. Lett. 16, 1142 (1966)

    Article  ADS  Google Scholar 

  56. R.E. Walstedt, V. Jaccarino, N. Kaplan, J. Phys. Soc. Jpn. 21, 1843 (1966)

    Article  ADS  Google Scholar 

  57. M.B. Salamon, J. Phys. Soc. Jpn. 21, 2746 (1966)

    Article  ADS  Google Scholar 

  58. T. Moriya, J. Phys. Soc. Jpn. 18, 516 (1964)

    Article  ADS  Google Scholar 

  59. M. Weger, E.L. Hahn, A.M. Portis, J. Appl. Phys. 32, 124S (1961)

    Article  ADS  Google Scholar 

  60. M. Weger, Phys. Rev. 128, 1505 (1962)

    Article  ADS  Google Scholar 

  61. V. Jaccarino, N. Kaplan, R.E. Walstedt, J.H. Wernick, Phys. Lett. 23, 514 (1966)

    Article  ADS  Google Scholar 

  62. H. Akai, Hyperfine Interact. 43, 255 (1988)

    Article  ADS  Google Scholar 

  63. H. Akai, M. Akai, S. Blügel, B. Drittler, H. Ebert, K. Terakura, R. Zeller, P.H. Dederichs, Progr. Theor. Phys. Suppl. 101, 11 (1990)

    Article  ADS  Google Scholar 

  64. G. Seewald, E. Hagn, E. Zech, Phys. Rev. Lett. 78, 5002 (1997)

    Article  ADS  Google Scholar 

  65. T. Funk, E. Beck, W.D. Brewer, C. Bobek, E. Klein, J. Magn. Magn. Mater. 195, 406 (1999)

    Article  ADS  Google Scholar 

  66. B.I. Reser, Phys. Met. Metallogr. 92(Suppl. 1), S123 (2001)

    Google Scholar 

  67. B.I. Reser, Y.I. Prokopjev, Phys. Met. Metallogr. 74, 123 (1992)

    Google Scholar 

  68. B.I. Reser, Phys. Met. Metallogr. 77, 451 (1994)

    Google Scholar 

  69. M. Shaham, J. Barak, U. El-Hanany, W.W. Warren Jr., Phys. Rev. B 22, 5400 (1980)

    Article  ADS  Google Scholar 

  70. P.J. Ségransan, Y. Chabre, W.G. Clark, J. Phys. F: Met. Phys. 8, 1513 (1978)

    Article  ADS  Google Scholar 

  71. S.V. Ivanov, M.I. Kurkin, in Dynamic and Kinetic Properties of Magnets, ed. by S.V. Vonsovskii, E.A. Turov (Nauka, Moscow, 1986), p. 223 [in Russian]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Melnikov, N.B., Reser, B.I. (2018). Temperature Dependence of Magnetic Characteristics. In: Dynamic Spin-Fluctuation Theory of Metallic Magnetism. Springer, Cham. https://doi.org/10.1007/978-3-319-92974-3_13

Download citation

Publish with us

Policies and ethics