Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 342 Accesses

Abstract

In the previous chapter it was discussed that the strong spectral modulations in the seed pulses generated by spectral broadening in cascaded HCFs constitute a serious problem for the parametric amplification and temporal compression of these pulses. In the present chapter we will describe our efforts to overcome this problem and discuss the advantages and disadvantages of three alternative seed generation schemes we developed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A detailed description of angular chirp and tilted pulse fronts can be found in Sect. 6.3.

  2. 2.

    It should be pointed out that the broad bandwidth of the interaction would usually (i.e. for a narrow-band pump) require a non-collinear geometry for phase matching. Because of the broadband pump employed here, however, this requirement is relaxed permitting the described collinear OPA.

References

  1. A. Shirakawa, I. Sakane, T. Kobayashi, Pulse-front-matched optical parametric amplification for sub-10-fs pulse generation tunable in the visible and near infrared. Opt. Lett. 23, 1292–4 (1998)

    Google Scholar 

  2. T. Kobayashi, A. Shirakawa, Tunable visible and near-infrared pulse generator in a 5fs regime. Appl. Phys. B 70, S239–S246 (2000)

    Google Scholar 

  3. T.J. Wang, Z. Major, I. Ahmad, S. Trushin, F. Krausz, S. Karsch, Ultrabroadband near-infrared pulse generation by noncollinear OPA with angular dispersion compensation. Appl. Phys. B Lasers Opt. 100, 207–214 (2010). https://doi.org/10.1007/s00340-009-3800-9

  4. G. Pretzler, A. Kasper, K. Witte, Angular chirp and tilted light pulses in CPA lasers. Appl. Phys. B Lasers Opt. 70, 1–9 (2000). https://doi.org/10.1007/s003400050001

  5. H. Liebetrau, M. Hornung, A. Seidel, M. Hellwing, A. Kessler, S. Keppler, F. Schorcht, J. Hein, M.C. Kaluza, Ultra-high contrast frontend for high peak power fs-lasers at 1030 nm. Opt. Express 22, 24776-24786 (2014). https://doi.org/10.1364/OE.22.024776

  6. H. Fattahi, H.Wang, A. Alismail, G. Arisholm, V. Pervak, A.M. Azzeer, F. Krausz, Near-PHz-bandwidth, phase-stable continua generated from a Yb:YAG thin-disk amplifier. Opt. Express 24, 24337 (2016). https://doi.org/10.1364/OE.24.024337

  7. A. Jullien, J.-P. Rousseau, B. Mercier, L. Antonucci, O. Albert, G. ChEriaux, S. Kourtev, N. Minkovski, S. Saltiel, Highly efficient nonlinear filter for femtosecond pulse contrast enhancement and pulse shortening. Opt. Lett. 33, 2353–2355 (2008). https://doi.org/10.1364/OL.33.002353

  8. A. Buck, K. Schmid, R. Tautz, J. Mikhailova, X. Gu, C.M.S. Sears, D. Herrmann, F. Krausz, Pulse cleaning of few-cycle OPCPA pulses by cross-polarized wave generation, in Frontiers in Optics 2010/Laser Science XXVI (2010), pp. 8–9. https://doi.org/10.1364/FIO.2010.FMN2

  9. L.P. Ramirez, D. Papadopoulos, M. Hanna, A. Pellegrina, F. Friebel, P. Georges, F. Druon, Compact, simple, and robust cross polarized wave generation source of few-cycle, high-contrast pulses for seeding petawattclass laser systems. J. Opt. Soc. Am. B 30, 2607 (2013). https://doi.org/10.1364/JOSAB.30.002607

  10. L. Canova, O. Albert, N. Forget, B. Mercier, S. Kourtev, N. Minkovski, S.M. Saltiel, R. Lopez Martens, R. Lopez Martens, Influence of spectral phase on cross-polarized wave generation with short femtosecond pulses. Appl. Phys. B 93, 443–453 (2008). https://doi.org/10.1007/s00340-008-3185-1

  11. G.P. Agrawal (ed.), Nonlinear Fiber Optics (Academic Press, 2001). https://doi.org/10.1002/adma.19900020919

  12. S. Kourtev, N. Minkovski, L. Canova, A. Jullien, Improved nonlinear cross-polarized wave generation in cubic crystals by optimization of the crystal orientation. J. Opt. Soc. Am. B 26, 1269–1275 (2009). https://doi.org/10.1103/PhysRevLett.84.3582

  13. C. Skrobol, High-Intensity, Picosecond-Pumped, Few-CycleOPCPA (Ludwig-Maximilians-Universität München, PhDthesis, 2014)

    Google Scholar 

  14. H. Fattahi, A. Schwarz, S. Keiber, N. Karpowicz, Efficient, octave-spanning difference-frequency generation using few-cycle pulses in simple collinear geometry. Opt. Lett. 38, 4216–4219 (2013). https://doi.org/10.1364/OL.38.004216

  15. A. Kessel, S. A. Trushin, N. Karpowicz, C. Skrobol, S. Klingebiel, C. Wandt, S. Karsch, Generation of multi-octave spanning high-energy pulses by cascaded nonlinear processes in BBO. Opt. Express 24, 5628 (2016). https://doi.org/10.1364/OE.24.005628

  16. H. Tan, G.P. Banfi, A. Tomaselli, Optical frequency mixing through cascaded second-order processes in \(\beta \)-barium borate. Appl. Phys. Lett. 63, 2472 (1993). https://doi.org/10.1063/1.110453

  17. G.I. Petrov, O. Albert, N. Minkovski, J. Etchepare, S.M. Saltiel, Experimental and theoretical investigation of generation of a cross-polarized wave by cascading of two different second-order processes. J. Opt. Soc. Am. B 19, 268 (2002). https://doi.org/10.1364/JOSAB.19.000268

  18. J. Matyschok, T. Lang, T. Binhammer, Temporal and spatial effects inside a compact and CEP stabilized, few-cycle OPCPA system at high repetition rates. Opt. Express 21, 475–479 (2013). https://doi.org/10.1063/1.123820.A

  19. A. BaltuSka, T. Fuji, T. Kobayashi, A. Baltuska, T. Fuji, T. Kobayashi, Controlling the carrier-envelope phase of ultrashort light pulses with optical parametric amplifiers. Phys. Rev. Lett. 88, 133901 (2002). https://doi.org/10.1103/PhysRevLett.88.133901

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Kessel .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kessel, A. (2018). Seed Generation Schemes. In: Generation and Parametric Amplification of Few‐Cycle Light Pulses at Relativistic Intensities. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-92843-2_4

Download citation

Publish with us

Policies and ethics