Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 391 Accesses

Abstract

This thesis is dedicated to the generation and amplification of intense, ultrashort light pulses. For a thorough understanding of the physical effects encountered when working with such pulses, the following chapter provides a mathematical description of the propagation and interaction of light.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    More precisely: there is only a small change of \(\varvec{\tilde{U}}\) within a distance of one wavelength \(\lambda = 2\pi /k\).

  2. 2.

    The mathematical requirement is that the difference between phase velocity \(v_\mathrm {p}=\frac{\omega }{k}\) and group velocity \(v_\mathrm {g}=\frac{\partial \omega }{\partial k}\) is small compared to the latter.

  3. 3.

    Not to be confused with the dispersion coefficient for the group delay \(D_1\) = GD\((\omega _0)\) which is the temporal delay of the carrier frequency \(\omega _0\) and hence a single value.

  4. 4.

    This substitution adds a factor of two due to the historical definition of \(d_\mathrm {eff}\) and another factor of two due to the permutation symmetry of \(\chi _{ijk}^{(2)}\). The relation between \(d_\mathrm {eff}\) and \(\chi _{ijk}^{(2)}\) will be further explained in Sect. 2.3.4.

  5. 5.

    For orthorhombic crystals the principle axes correspond to the crystallographic axes. For non-orthogonal crystal structures such as hexagonal or triclinic crystals, however, principle and crystallographic axes do not coincide.

  6. 6.

    For simplicity we consider in the following only linearly polarized beams.

  7. 7.

    For a derivation of Eq. (2.84) see Sect. A.2.2 in the appendix.

References

  1. R.W. Boyd, Nonlinear Optics (Academic Press, 2008)

    Chapter  Google Scholar 

  2. R.L. Sutherland, Handbook of Nonlinear Optics (Marcel Dekker, 2003)

    Book  Google Scholar 

  3. R. Trebino, Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses (Springer US, Boston, MA, 2000). https://doi.org/10.1007/978-1-4615-1181-6_3

    Book  Google Scholar 

  4. N. Karpowicz, V. Yakovlev, Computational methods in photonics, lecture given at Ludwig-Maximilians-Universität München in 2013/2014

    Google Scholar 

  5. T. Brabec, F. Krausz, Intense few-cycle laser fields: Frontiers of nonlinear optics. Rev. Mod. Phys. 72, 545–591 (2000). https://doi.org/10.1103/RevModPhys.72.545

    Article  ADS  Google Scholar 

  6. T. Brabec, F. Krausz, Nonlinear optical pulse propagation in the single-cycle regime. Phys. Rev. Lett. 78, 3282, (1997). https://doi.org/10.1103/PhysRevLett.78.3282

    Article  ADS  Google Scholar 

  7. H. Telle, G. Steinmeyer, A. Dunlop, J. Stenger, D. Sutter, U. Keller, Carrier-envelope offset phase control: a novel concept for absolute optical frequency measurement and ultrashort pulse generation. Appl. Phys. B 69, 327–332, (1999). https://doi.org/10.1007/s003400050813

    Article  Google Scholar 

  8. F. TrAger (ed.), Springer Hand book of Lasers and Optics (Springer, Berlin, Heidelberg, 2012). https://doi.org/10.1007/978-3-642-19409-2

  9. P.E. Ciddor, Refractive index of air: new equations for the visible and near infrared, Appl. Opt. 35, 1566– 1573 (1996). https://doi.org/10.1364/AO.35.001566

    Article  ADS  Google Scholar 

  10. H.H. Li, Refractive index of alkaline earth halides and its wavelength and temperature derivatives. J. Phys. Chem. Ref. Data 9, 161–290 (1980). https://doi.org/10.1063/1.555616

    Article  MathSciNet  ADS  Google Scholar 

  11. D. Zhang, Y.Kong, J.-Y. Zhang, Optical parametric properties of 532-nm-pumped beta-barium-borate near the infrared absorption edge. Opt. Commun. 184, 485–491 (2000). https://doi.org/10.1016/S0030-4018(00)00968-8

    Article  ADS  Google Scholar 

  12. M. Daimon, A. Masumura, High-accuracy measurements of the refractive index and its temperature coefficient of calcium fluoride in a wide wavelength range from 138 to 2326 nm. Appl. Opt. 41, 5275–5281 (2002). https://doi.org/10.1364/AO.41.005275

    Article  ADS  Google Scholar 

  13. I.H. Malitson, Interspecimen comparison of the refractive index of fused silica. J. Opt. Soc. Am. 55 1205–1209 (1965). https://doi.org/10.1364/JOSA.55.001205

    Article  ADS  Google Scholar 

  14. K. Kato, Temperature-tuned \(90^{\circ }\) phase-matching properties of LiB3O5. IEEE J. Quantum. Electron. 30, 2950–2952 (1994). https://doi.org/10.1109/3.362711

    Article  ADS  Google Scholar 

  15. SCHOTT, OpticalGlass-CollectionDatasheets, http://www.us.schott.com/. Accessed 14 Dec 2016

  16. D. Eimerl, L. Davis, S. Velsko, E.K. Graham, A. Zalkin, Optical, mechanical, and thermal properties of barium borate. J. Appl. Phys. 62, 1968–1983 (1987). https://doi.org/10.1063/1.339536

    Article  ADS  Google Scholar 

  17. D. Strickland, G. Mourou, Compression of amplified chirped optical pulses. Opt. Commun. 56, 219–221 (1985). https://doi.org/10.1016/0030-4018(85)90120-8

    Article  ADS  Google Scholar 

  18. J. Moses, C. Manzoni, S.-W. Huang, G. Cerullo, F.X. Kaertner, Temporal optimization of ultrabroadband high-energy OPCPA. Opt. Express 17, 5540 (2009). https://doi.org/10.1364/OE.17.005540

    Article  ADS  Google Scholar 

  19. J.-C. Diels, W. Rudolph (ed.), Ultrashort Laser Pulse Phenomena (Academic Press, 2006)

    Google Scholar 

  20. R. SzipOcs, C. Spielmann, F. Krausz, K. Ferencz, Chirped multilayer coatings for broadband dispersion control in femtosecond lasers. Opt. Lett. 19, 201 (1994). https://doi.org/10.1364/OL.19.000201

    Article  ADS  Google Scholar 

  21. V. Pervak, I. Ahmad, M.K. Trubetskov, A.V. Tikhonravov, F. Krausz, Double-angle multilayer mirrors with smooth dispersion characteristics. Opt. Express 17, 7943 (2009). https://doi.org/10.1364/OE.17.007943

    Article  ADS  Google Scholar 

  22. A.M. Weiner, D.E. Leaird, J.S. Patel, J.R. Wullert, Programmable femtosecond pulse shaping by use of a multielement liquid-crystal phase modulator. Opt. Lett. 15, 326 (1990). https://doi.org/10.1364/OL.15.000326

    Article  ADS  Google Scholar 

  23. P. Tournois, Acousto-optic programmable dispersive filter for adaptive compensation of group delay time dispersionin laser systems. Opt. Commun. 140, 245–249 (1997). https://doi.org/10.1016/S0030-4018(97)00153-3

    Article  ADS  Google Scholar 

  24. A. Monmayrant, S. Weber, B. Chatel, A newcomer’s guide to ultrashort pulse shaping and characterization. J. Phys. B At. Mol. Opt. Phys. 43, 103001 (2010). https://doi.org/10.1088/0953-4075/43/10/103001

    Article  ADS  Google Scholar 

  25. J.E. Midwinter, J. Warner, The effects of phase matching method and of uniaxial crystal symmetry on the polar distribution of second-order non-linear optical polarization. Br. J. Appl. Phys. 16, 1135–1142 (1965). https://doi.org/10.1088/0508-3443/16/8/312

    Article  ADS  Google Scholar 

  26. G. Cerullo, S. De Silvestri, Ultrafast optical parametric amplifiers. Rev. Sci. Instrum. 74, 1–18 (2003). https://doi.org/10.1063/1.1523642

    Article  ADS  Google Scholar 

  27. I.N. Ross, P. Matousek, G.H.C. New, K. Osvay, Analysis and optimization of optical parametric chirped pulse amplification. J. Opt. Soc. Am. B 19, 2945–2956 (2002). https://doi.org/10.1364/JOSAB.19.002945

    Article  ADS  Google Scholar 

  28. S. Demmler, J. Rothhardt, S. HAdrich, J. Bromage, J. Limpert, A. TUnnermann, Control of nonlinear spectral phase induced by ultra-broadband optical parametric amplification. Opt. Lett. 37, 3933 (2012). https://doi.org/10.1364/OL.37.003933

    Article  ADS  Google Scholar 

  29. A. Couairon, A. Mysyrowicz, Femtosecond filamentation in transparent media. Phys. Rep. 441, 47–189 (2007). https://doi.org/10.1016/j.physrep.2006.12.005

    Article  ADS  Google Scholar 

  30. F. DeMartini, C.H. Townes, T.K. Gustafson, P.L. Kelley, Self-steepening of light pulses. Phys. Rev. 164, 312–323 (1967). https://doi.org/10.1103/PhysRev.164.312

    Article  ADS  Google Scholar 

  31. R. del Coso, J. Solis, Relation between nonlinear refractive index and third-order susceptibility in absorbing media. J. Opt. Soc. Am. B 21, 640 (2004). https://doi.org/10.1364/JOSAB.21.000640

    Article  ADS  Google Scholar 

  32. N. Matsuda, R. Shimizu, Y. Mitsumori, H. Kosaka, K. Edamatsu, Observation of optical-fibre Kerr nonlinearity at the single-photon level. Nat. Photonics 3, 95–98 (2009). https://doi.org/10.1038/nphoton.2008.292

    Article  ADS  MATH  Google Scholar 

  33. A. Thai, C. Skrobol, P.K. Bates, G. Arisholm, Z. Major, F. Krausz, S. Karsch, J. Biegert, Simulations of petawatt-class few-cycle optical-parametric chirped-pulse amplification, including nonlinear refractive index effects. Opt. Lett. 35, 3471–3473 (2010). https://doi.org/10.1364/OL.35.003471

    Article  ADS  Google Scholar 

  34. N. Minkovski, G.I. Petrov, S.M. Saltiel, O. Albert, J. Etchepare, Nonlinear polarization rotation and orthogonal polarization generation experienced in a single-beam configuration. J. Opt. Soc. Am. B 21, 1659 (2004). https://doi.org/10.1364/JOSAB.21.001659

    Article  ADS  Google Scholar 

  35. S. Kourtev, N. Minkovski, L. Canova, A. Jullien, Improved nonlinear cross-polarized wave generation in cubic crystals by optimization of the crystal orientation. J. Opt. Soc. Am. B 26,1269–1275 (2009). https://doi.org/10.1103/PhysRevLett.84.3582

    Article  Google Scholar 

  36. A. Jullien, J.-P. Rousseau, B. Mercier, L. Antonucci, O. Albert, G. ChEriaux, S. Kourtev, N. Minkovski, S. Saltiel, Highly efficient nonlinear filter for femtosecond pulse contrast enhancement and pulse shortening. Opt. Lett. 33, 2353–2355 (2008). https://doi.org/10.1364/OL.33.002353

    Article  ADS  Google Scholar 

  37. A. MUnzer, Development of a High-Contrast Frontend for ATLAS Ti:Sa Laser. Diploma thesis, Ludwig-Maximilians- Universität München, 2013

    Google Scholar 

  38. H. Fattahi, H.Wang, A. Alismail, G. Arisholm, V. Pervak, A. M. Azzeer, F. Krausz, Near-PHz-bandwidth, phase-stable continua generated from a Yb:YAG thin-disk amplifier. Opt. Express 24, 24337 (2016). https://doi.org/10.1364/OE.24.024337

    Article  ADS  Google Scholar 

  39. H. Liebetrau, M. Hornung, A. Seidel, M. Hellwing, A. Kessler, S. Keppler, F. Schorcht, J. Hein, M.C. Kaluza, Ultra-high contrast frontend for high peak power fs-lasers at 1030 nm. Opt. Express 22, 24776-24786 (2014). https://doi.org/10.1364/OE.22.024776

    Article  ADS  Google Scholar 

  40. L.P. Ramirez, D. Papadopoulos, M. Hanna, A. Pellegrina, F. Friebel, P. Georges, F. Druon, Compact, simple, and robust cross polarized wave generation source of few-cycle, high-contrast pulses for seeding petawattclass laser systems. J. Opt. Soc. Am. B 30, 2607 (2013). https://doi.org/10.1364/JOSAB.30.002607

    Article  Google Scholar 

  41. A. Buck, K. Schmid, R. Tautz, J. Mikhailova, X. Gu, C.M.S. Sears, D. Herrmann, F. Krausz, Pulse cleaning of few-cycle OPCPA pulses by cross-polarized wave generation, in Frontiers in Optics 2010/Laser Science, vol. XXVI, (2010), pp. 8-9. https://doi.org/10.1364/FIO.2010.FMN2

  42. R. DeSalvo, M. Sheik-Bahae, A.A. Said, D.J. Hagan, E.W.V. Stryland, Z-scan measurements of the anisotropy of nonlinear refraction and absorption in crystals. Opt. Lett. 18 194–196 (1993). https://doi.org/10.1364/OL.18.000194

    Article  ADS  Google Scholar 

  43. V.G. Dmitriev, G.G. Gurzadyan, D.N. Nikogosyan, Handbook of Nonlinear Optical Crystals, ed. by A.E. Siegmann (Springer, Berlin, Heidelberg, 1999). https://doi.org/10.1007/978-3-540-46793-9

    Book  Google Scholar 

  44. M. Bache, H. Guo, B. Zhou, X. Zeng, The anisotropic Kerr nonlinear refractive index of the beta-barium borate (\(\beta \)-BaB\_2O\_4) nonlinear crystal. Opt. Mater. Express 3, 357 (2013). https://doi.org/10.1364/OME.3.000357

    Article  ADS  Google Scholar 

  45. United Crystals, Properties of LBO Single Crystal, http://unitedcrystals.com/LBOProp.html. Accessed 17 Mar 2017

  46. B. Boulanger, J. Zyss, Nonlinear optical properties, in International Tables for Crystallography, vol. D, ed. by A. Authier (Wiley, 2013)

    Chapter  Google Scholar 

  47. D. Meschede, Optik, Licht und Laser (Vieweg+Teubner Verlag, 2008). https://doi.org/10.1007/978-3-8348-9288-1

  48. J.A. Armstrong, N. Bloembergen, J. Ducuing, P.S. Pershan, Interactions between light waves in a nonlinear dielectric. Phys. Rev. 127, 1918–1939 (1962). https://doi.org/10.1103/PhysRev.127.1918

    Article  ADS  Google Scholar 

  49. G.M. Gale, M. Cavallari, T.J. Driscoll, F. Hache, Sub-20-fs tunable pulses in the visible from an 82-MHz optical parametric oscillator. Opt. Lett. 20, 1562 (1995). https://doi.org/10.1364/OL.20.001562

    Article  ADS  Google Scholar 

  50. G. Arisholm, General numerical methods for simulating Second-Order Nonlinear Interactions in Birefringent Media. J. Opt. Soc. Am. B 14, 2543–2549 (1997). https://doi.org/10.1364/JOSAB.14.002543

    Article  ADS  Google Scholar 

  51. C. Skrobol, I. Ahmad, S. Klingebiel, C. Wandt, S.A. Trushin, Z. Major, F. Krausz, S. Karsch, Broadband amplification by picosecond OPCPA in DKDP pumped at 515 nm. Opt. Express 20, 4619–29 (2012)

    Article  ADS  Google Scholar 

  52. H. Fattahi, Yb:YAG-pumped, few-cycle optical parametric amplifiers, in High Energy and Short Pulse Lasers, ed. by R. Viskup, InTech (2016). https://doi.org/10.5772/61628

    Google Scholar 

  53. A.V. Smith, SNLO nonlinear optics code (v.61), http://www.as-photonics.com. Accessed 17 Mar 2017

  54. H. Fattahi, Third-Generation Femtosecond Technology (Ludwig-Maximilians-Universität München, PhDthesis, 2015)

    Book  Google Scholar 

  55. C. Skrobol, High-Intensity, Picosecond-Pumped, Few-CycleOPCPA (Ludwig-Maximilians-Universität München, PhDthesis, 2014)

    Google Scholar 

  56. T. Lang, A. Harth, J. Matyschok, T. Binhammer, M. Schultze, U. Morgner, Impact of temporal, spatial and cascaded effects on the pulse formation in ultra-broadband parametric amplifiers. Opt. Express 21, 949–59 (2013)

    Article  ADS  Google Scholar 

  57. M. Hochbruck, A. Ostermann, Exponential integrators. Acta Numer. 19 (2010). https://doi.org/10.1017/S0962492910000048

    Article  MathSciNet  ADS  MATH  Google Scholar 

  58. C. Froehly, A. Lacourt, J. Vienot, Time impulse response and time frequency response of optical pupils. Experimental confirmations and applications. Nouv. Rev. Optique 183, 183–196 (1973). https://doi.org/10.1088/0335-7368/4/4/301

    Article  ADS  Google Scholar 

  59. C. Iaconis, I. Walmsley, Spectral phase interferometry for direct electric-field reconstruction of ultrashort optical pulses. Opt. Lett. 23, 792–794 (1998). https://doi.org/10.1109/CLEO.1998.676573

    Article  ADS  Google Scholar 

  60. M.E. Anderson, A. Monmayrnat, S.P. Gorza, P. Wasylczk, I.A. Walmsley, SPIDER: A decade of measuring ultrashort pulses. Laser Phys. Lett. 5, 256–266 (2008). https://doi.org/10.1002/lapl.200710129

    Article  ADS  Google Scholar 

  61. T. Oksenhendler, S. Coudreau, N. Forget, V. Crozatier, S. Grabielle, R. Herzog, O. Gobert, D. Kaplan, Self-referenced spectral interferometry. Appl. Phys. B Lasers Opt. 99, 7–12 (2010). https://doi.org/10.1007/s00340-010-3916-y

    Article  Google Scholar 

  62. A. Trabattoni, T. Oksenhendler, H. Jousselin, G. Tempea, S. De Silvestri, G. Sansone, F. Calegari, M. Nisoli, Self-referenced spectral interferometry for single-shot measurement of sub-5-fs pulses. Rev. Sci. Instrum. 86 (2015). https://doi.org/10.1063/1.4936289

    Article  ADS  Google Scholar 

  63. D.J. Kane, Recent progress toward real-time measurement of ultrashort laser pulses. IEEE J. Quantum. Electron. 35, 421–431 (1999). https://doi.org/10.1109/3.753647

    Article  ADS  Google Scholar 

  64. R. Trebino, FROG Code, http://frog.gatech.edu/code.html. Accessed 17 Mar 2017

  65. R. Trebino, K.W. DeLong, D.N. Fittinghoff, J.N. Sweetser, M.A. KrumbUgel, B.A. Richman, D.J. Kane, Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating. Rev. Sci. Instrum. 68, 3277–3295 (1997). https://doi.org/10.1063/1.1148286

    Article  ADS  Google Scholar 

  66. S. Akturk, C. D’Amico, A. Mysyrowicz, Measuring ultrashort pulses in the single-cycle regime using frequency- resolved optical gating. J. Opt. Soc. Am. B 25, A63–A69 (2008). https://doi.org/10.1364/JOSAB.25.000A63

    Article  ADS  Google Scholar 

  67. J.N. Sweetser, D.N. Fittinghoff, R. Trebino, Transient-grating frequency-resolved optical gating. Opt. Lett. 22, 519–21 (1997)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Kessel .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kessel, A. (2018). Fundamentals. In: Generation and Parametric Amplification of Few‐Cycle Light Pulses at Relativistic Intensities. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-92843-2_2

Download citation

Publish with us

Policies and ethics