Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 331 Accesses

Abstract

Light plays an essential role in our everyday life. Its detection via the eye provides us with continuous information about the objects and dynamics in our surroundings. For scientists, it has been a strong motivation to surpass the capabilities of the eye by technological means in order to gain insights into natures’ structures and processes that would be otherwise too small, too fast or too weak to be observed. Over the past centuries this desire has led to great innovations on the fields of photography, microscopy, astronomy and many others.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T.H. Maiman, Stimulated optical radiation in ruby. Nature 187, 493–494 (1960). https://doi.org/10.1038/187493a0

    Article  ADS  Google Scholar 

  2. A. Ashkin, Acceleration and trapping of particles by radiation pressure. Phys. Rev. Lett. 24, 156–159 (1970). https://doi.org/10.1103/PhysRevLett.24.156

    Article  ADS  Google Scholar 

  3. T.W. HAnsch, Nobel lecture: Passion for precision. Rev. Mod. Phys. 78, pp. 1297–1309 (2006). https://doi.org/10.1103/RevModPhys.78.1297

    Article  ADS  Google Scholar 

  4. B.P. Abbott et al., GW150914: The advanced LIGO detectors in the era of first discoveries. Phys. Rev. Lett. 116, 1–12 (2016). https://doi.org/10.1103/PhysRevLett.116.131103

  5. A. Laubereau, W. Kaiser, Vibrational dynamics of liquids and solids investigated by picosecond light pulses. Rev. Mod. Phys. 50, 607–665, (1978). https://doi.org/10.1103/RevModPhys.50.607

    Article  ADS  Google Scholar 

  6. A.H. Zewail, Femtochemistry:atomic-scale dynamics of the chemical bond. J. Phys. Chem. A 104, 5660–5694 (2000). https://doi.org/10.1021/jp001460h

    Article  ADS  Google Scholar 

  7. A. Sanchez, R.E. Fahey, A.J. Strauss, R.L. Aggarwal, Room-temperature continuous-wave operation of a Ti:Al2O3 laser. Opt. Lett. 11, 363–364 (1986)

    Article  ADS  Google Scholar 

  8. D.E. Spence, P.N. Kean, W. Sibbett, 60-fsec pulse generation from a self-mode-locked Ti:sapphire laser. Opt. Lett. 16, 42–44 (1991). https://doi.org/10.1364/OL.16.000042

    Article  ADS  Google Scholar 

  9. U. Morgner, F.X. KArtner, S.H. Cho, Y. Chen, H.A. Haus, J. G. Fujimoto, E.P. Ippen, V. Scheuer, G. Angelow, T. Tschudi, Sub-two-cycle pulses from a Kerr-lens mode-locked Ti:sapphire laser. Opt. Lett. 24, 411–413 (1999). https://doi.org/10.1364/OL.24.000920

    Article  ADS  Google Scholar 

  10. P.F. Moulton, Spectroscopic and laser characteristics of Ti: Al203. J. Opt. Soc. Am. B 3, 125–133 (1986). https://doi.org/10.1364/JOSAB.3.000125

    Article  ADS  Google Scholar 

  11. Spectra-Physics, Femtopower Datasheet, http://www.spectra-physics.com/assets/client_files/files/documents/datasheets/Femtopower%20data%20sheet.pdf. Accessed 28 Mar 2017

  12. Z. Gan, L. Yu, S. Li, C. Wang, X. Liang, Y. Liu, W. Li, Z. Guo, Z. Fan, X. Yuan, L. Xu, Z. Liu, Y. Xu, J. Lu, H. Lu, D. Yin, Y. Leng, R. Li, Z. Xu, 200 J high efficiency Ti : sapphire chirped pulse amplifier pumped by temporal dual- pulse. Opt. Express 25, 5169–5178 (2017). https://doi.org/10.1364/OE.25.005169

    Article  ADS  Google Scholar 

  13. P.A. Franken, A.E. Hill, C.W. Peters, G. Weinreich, Generation of optical harmonics. Phys. Rev. Lett. 7, 118–119 (1961). https://doi.org/10.1103/PhysRevLett.7.118

    Article  ADS  Google Scholar 

  14. M. Nisoli, S. DeSilvestri, O. Svelto, Generation of high energy 10 fs pulses by a new pulse compression technique. Appl. Phys. Lett. 68, 2793–2795 (1996). https://doi.org/10.1063/1.116609

    Article  ADS  Google Scholar 

  15. A.L. Cavalieri, E. Goulielmakis, B. Horvath, W. Helml, M. Schultze, M. Fiess, V. Pervak, L. Veisz, V.S. Yakovlev, M. Uiberacker, A. Apolonski, F. Krausz, R. Kienberger, Intense 1.5-cycle near infrared laser waveforms and their use for the generation of ultra-broadband soft-x-ray harmonic continua. New J. Phys. 9 (2007). https://doi.org/10.1088/1367-2630/9/7/242

  16. A. McPherson, G. Gibson, H. Jara, U. Johann, T.S. Luk, I.A. McIntyre, K. Boyer, C.K. Rhodes, Studies of multiphoton production of vacuum-ultraviolet radiation in the rare gases. J. Opt. Soc. Am. B 4, 595 (1987). https://doi.org/10.1364/JOSAB.4.000595

    Article  ADS  Google Scholar 

  17. T. Brabec, F. Krausz, Intense few-cycle laser fields: Frontiers of nonlinear optics. Rev. Mod. Phys. 72, 545–591 (2000). https://doi.org/10.1103/RevModPhys.72.545

    Article  ADS  Google Scholar 

  18. E. Goulielmakis, M. Schultze, M. Hofstetter, V.S. Yakovlev, J. Gagnon, M. Uiberacker, A.L. Aquila, E.M. Gullikson, D.T. Attwood, R. Kienberger, F. Krausz, U. Kleineberg, Single-cycle nonlinear optics. Science 320, 1614–7 (2008). https://doi.org/10.1126/science.1157846

    Article  ADS  Google Scholar 

  19. A.L. Cavalieri, N. MUller, T. Uphues, V.S. Yakovlev, A. BaltuSka, B. Horvath, B. Schmidt, L. BlUmel, R. Holzwarth, S. Hendel, M. Drescher, U. Kleineberg, P.M. Echenique, R. Kienberger, F. Krausz, U. Heinzmann, Attosecond spectroscopy in condensed matter. Nature 449, 1029–1032 (2007). https://doi.org/10.1038/nature06229

    Article  ADS  Google Scholar 

  20. F. Krausz, M. Ivanov, Attosecond physics. Rev. Mod. Phys. 81, 163–234 (2009). https://doi.org/10.1103/RevModPhys.81.163

    Article  ADS  Google Scholar 

  21. A. Sommer, E.M. Bothschafter, S.A. Sato, C. Jakubeit, T. Latka, O. Razskazovskaya, H. Fattahi, M. Jobst, W. Schweinberger, V. Shirvanyan, V.S. Yakovlev, R. Kienberger, K. Yabana, N. Karpowicz, M. Schultze, F. Krausz, Attosecond nonlinear polarization and light-matter energy transfer in solids. Nature 534, 86–90 (2016). https://doi.org/10.1038/nature17650

    Article  ADS  Google Scholar 

  22. M. Bellini, C. Corsi, M.C. Gambino, Neutral depletion and beam defocusing in harmonic generation from strongly ionized media. Phys. Rev. A 64, 1–10 (2001). https://doi.org/10.1103/PhysRevA.64.023411

  23. E. Takahashi, Y. Nabekawa, T. Otsuka, M. Obara, K. Midorikawa, Generation of highly coherent submicrojoule soft x rays by high-order harmonics. Phys. Rev. A 66, 1–4 (2002). https://doi.org/10.1103/PhysRevA.66.021802

  24. G. Sansone, L. Poletto, M. Nisoli, High-energy attosecond light sources. Nat. Photonics 5, 655–663 (2011). https://doi.org/10.1038/nphoton.2011.167

    Article  ADS  Google Scholar 

  25. D.E. Rivas, M. Weidman, B. Bergues, A. Muschet, A. Guggenmos, O. Razskazovskaya, H. SchrOder, W. Helm- l, G. Marcus, R. Kienberger, U. Kleineberg, V. Pervak, P. Tzallas, D. Charalambidis, F. Krausz, L. Veisz, Generation of High-Energy Isolated Attosecond Pulses for XUV-pump/XUV-probe Experiments at 100 eV, in High- Brightness Sources and Light-Driven Interactions 18762, HT1B.1, (2016). https://doi.org/10.1364/HILAS.2016.HT1B.1

  26. D. Umstadter, Relativistic laser-plasma interactions. J. Phys. D: Appl. Phys. 36 (2003). https://doi.org/10.1088/0022-3727/36/8/202

    Article  ADS  Google Scholar 

  27. G.D. Tsakiris, K. Eidmann, J.Meyer-ter-Vehn, F. Krausz, Route to intense single attosecond pulses. New J. Phys. 8 (2006). https://doi.org/10.1088/1367-2630/8/1/019

    Article  ADS  Google Scholar 

  28. U. Teubner, P. Gibbon, High-order harmonics from laser-irradiated plasma surfaces. Rev. Mod. Phys. 81, 445–479 (2009). https://doi.org/10.1103/RevModPhys.81.445

    Article  ADS  Google Scholar 

  29. C. Thaury, F. QuErE, High-order harmonic and attosecond pulse generation on plasma mirrors: basic mechanisms. J. Phys. B: At. Mol. Opt. Phys. 43, 213001 (2010). https://doi.org/10.1088/0953-4075/43/21/213001

    Article  ADS  Google Scholar 

  30. P. Heissler, R. HOrlein, J.M. Mikhailova, L. Waldecker, P. Tzallas, A. Buck, K. Schmid, C.M.S. Sears, F. Krausz, L. Veisz, M. Zepf, G.D. Tsakiris, Few-cycle driven relativistically oscillating plasma mirrors: A source of intense isolated attosecond pulses. Phys. Rev. Lett. 108, 235003 (2012). https://doi.org/10.1103/PhysRevLett.108.235003

  31. E.W. Gaul, M. Martinez, J. Blakeney, A. Jochmann, M. Ringuette, D. Hammond, T. Borger, R. Escamilla, S. Douglas, W. Henderson, G. Dyer, A. Erlandson, R. Cross, J. Caird, C. Ebbers, T. Ditmire, Demonstration of a 1.1 petawatt laser based on a hybrid optical parametric chirped pulse amplification/mixed Nd:glass amplifier. Appl. Opt. 49, 1676–1681 (2010). https://doi.org/10.1364/AO.49.001676

    Article  ADS  Google Scholar 

  32. W.P. Leemans, J. Daniels, A. Deshmukh, A.J. Gonsalves, A. Magana, H.-S. Mao, D.E. Mittelberger, K. Naka-Mura, J. R. Riley, D. Syversrud, C. TOth, N. Ybarrolaza, BELLA laser and operations, in Proceedings of PAC (2013), pp. 1097–1100

    Google Scholar 

  33. F. Böhle, M. Kretschmar, A. Jullien, M. Kovacs, M. Miranda, R. Romero, H. Crespo, U. Morgner, P. Simon, R. Lopez-Martens, T. Nagy, Compression of CEP-stable multi-mJ laser pulses down to 4 fs in long hollow fibers. Laser Phys. Lett. 11, 095401 (2014). https://doi.org/10.1088/1612-2011/11/9/095401

    Article  ADS  Google Scholar 

  34. O. Hort, A. Dubrouil, A. Cabasse, S. Petit, E. Mével, D. Descamps, E. Constant, Postcompression of high-energy terawatt-level femtosecond pulses and application to high-order harmonic generation. J. Opt. Soc. Am. B 32D, 1055 (2015). https://doi.org/10.1364/JOSAB.32.001055

    Article  Google Scholar 

  35. S. Mironov, E. Khazanov, G. Mourou, Pulse shortening and ICR enhancement for PW-class lasers, in Specialty Optical Fibers, JTu3A.24 (2014)

    Google Scholar 

  36. G. Mourou, S. Mironov, E. Khazanov, A. Sergeev, Single cycle thin film compressor opening the door to Zeptosecond-Exawatt physics. Eur. Phys. J. Spec. Top. 223, 1181–1188 (2014). https://doi.org/10.1140/epjst/e2014-02171-5

    Article  Google Scholar 

  37. C. Hooker, Y. Tang, O. Chekhlov, J. Collier, E. Divall, K. Ertel, S. Hawkes, B. Parry, P.P. Rajeev, Improving coherent contrast of petawatt laser pulses. Opt. Express 19, 2193–2203 (2011). https://doi.org/10.1364/OE.19.002193

    Article  ADS  Google Scholar 

  38. L. Yu, Z. Xu, X. Liang, L. Xu, W. Li, C. Peng, Z. Hu, C. Wang, X. Lu, Y. Chu, Z. Gan, X. Liu, Y. Liu, X. Wang, H. Lu, D. Yin, Y. Leng, R. Li, Z. Xu, Optimization for high-energy and high-efficiency broadband optical parametric chirped-pulse amplification inLBOnear 800 nm. Opt. Lett. 40, 3412 (2015). https://doi.org/10.1364/OL.40.003412

    Article  ADS  Google Scholar 

  39. F. Lureau, S. Laux, O. Casagrande, O. Chalus, A. Pellegrina, G. Matras, C. Radier, G. Rey, S. Ricaud, S. Herriot, P. Jougla, M. Charbonneau, P. Duvochelle, C. Simon-Boisson, Latest results of 10 petawatt laser beamline for ELI nuclear physics infrastructure, in Proceedings of the SPIE, vol. 9726 (2016). https://doi.org/10.1117/12.2213067

  40. D.N. Papadopoulos, J. Zou, C.L. Blanc, G. Ch, A. Beluze, N. Lebas, P. Monot, F. Mathieu, P. Audebert, The Apollon 10PWlaser: experimental and theoretical investigation of the temporal characteristics. High Power Laser Sci. Eng. 4, 1–7 (2016). https://doi.org/10.1017/hpl.2016.34

  41. J.A. Armstrong, N. Bloembergen, J. Ducuing, P.S. Pershan, Interactions between light waves in a nonlinear dielectric. Phys. Rev. 127, 1918–1939 (1962). https://doi.org/10.1103/PhysRev.127.1918

    Article  ADS  Google Scholar 

  42. G. Cerullo, S. De Silvestri, Ultrafast optical parametric amplifiers. Rev. Sci. Instrum. 74, 1–18 (2003). https://doi.org/10.1063/1.1523642

    Article  ADS  Google Scholar 

  43. O.V. Chekhlov, J.L. Collier, I.N. Ross, P.K. Bates, M. Notley, C. Hernandez-Gomez, W. Shaikh, C. N. Dan- son, D. Neely, P. Matousek, S. Hancock, L. Cardoso, 35 J broadband femtosecond optical parametric chirped pulse amplification system. Opt. Lett. 31, 3665 (2006). https://doi.org/10.1364/OL.31.003665

    Article  ADS  Google Scholar 

  44. L. Veisz, D. Rivas, G. Marcus, X. Gu, D. Cardenas, J. Xu, J. Mikhailova, A. Buck, T. Wittmann, C.M.S. Sears, D. Herrmann, O. Razskazovskaya, V. Pervak, F. Krausz, Multi-10-TWsub-5-fs optical parametric synthesizer, in 2014 IEEE Photonics Conference vol. 163, (2014), pp. 510–511. https://doi.org/10.1109/IPCon.2014.6995473

  45. S. Karsch, Z. Major, J. FUlOp, I. Ahmad, T.-J.Wang, A. Henig, S. Kruber, R. Weingartner, M. Siebold, J. Hein, C. Wandt, S. Klingebiel, J. Osterhoff, R. HOrlein, F. Krausz, The petawatt field synthesizer: a new approach to ultrahigh field generation. Adv. Sol.-State Photonics WF1 (2008). https://doi.org/10.1364/ASSP.2008.WF1

  46. Z. Major, S.A. Trushin, I. Ahmad, M. Siebold, C. Wandt, S. Klingebiel, T.-J. Wang, J.A. FUlOp, A. Henig, S. Kruber, R. Weingartner, A. Popp, J. Osterhoff, R. HOrlein, J. Hein, V. Pervak, A. Apolonski, F. Krausz, S. Karsch, Basic concepts and current status of the petawatt field synthesizer-a new approach to ultrahigh field generation. Rev. Laser Eng. 37, 431–436 (2009). https://doi.org/10.2184/lsj.37.431

    Article  Google Scholar 

  47. B.C. Stuart, M.D. Feit, A.M. Rubenchik, B.W. Shore, M.D. Perry, Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses. Phys. Rev. Lett. 74, 2248–2251 (1995). https://doi.org/10.1103/PhysRevLett.74.2248

    Article  ADS  Google Scholar 

  48. C. Skrobol, I. Ahmad, S. Klingebiel, C. Wandt, S.A. Trushin, Z. Major, F. Krausz, S. Karsch, Broadband amplification by picosecond OPCPA in DKDP pumped at 515 nm. Opt. Express 20, 4619–4629 (2012)

    Article  ADS  Google Scholar 

  49. C. Skrobol, High-Intensity, Picosecond-Pumped, Few-CycleOPCPA (Ludwig-Maximilians-Universität München, PhDthesis, 2014)

    Google Scholar 

  50. L. Veisz, D. Rivas, G. Marcus, X. Gu, D. Cardenas, J. Mikhailova, A. Buck, T. Wittmann, C.M.S. Sears, S.W. Chou, J. Xu, G. Ma, D. Herrmann, O. Razskazovskaya, V. Pervak, F. Krausz, Generation and applications of sub-5-fs multi-10-TW light pulses, in Pacific Rim Conference on Lasers and Electro-Optics, CLEO-Technical Digest (2013). https://doi.org/10.1109/CLEOPR.2013.6600068

  51. J. Moses, C. Manzoni, S.-W. Huang, G. Cerullo, F.X. Kaertner, Temporal optimization of ultrabroadband high-energy OPCPA. Opt. Express 17, 5540 (2009). https://doi.org/10.1364/OE.17.005540

    Article  ADS  Google Scholar 

  52. D. Strickland, G. Mourou, Compression of amplified chirped optical pulses. Opt. Commun. 56, 219–221 (1985). https://doi.org/10.1016/0030-4018(85)90120-8

    Article  ADS  Google Scholar 

  53. I. Ahmad, S.A. Trushin, Z. Major, C. Wandt, S. Klingebiel, T.J. Wang, V. Pervak, A. Popp, M. Siebold, F. Krausz, S. Karsch, Frontend light source for short-pulse pumped OPCPA system. Appl. Phys. B Lasers Opt. 97, 529–536 (2009). https://doi.org/10.1007/s00340-009-3599-4

    Article  Google Scholar 

  54. I. Ahmad, Development of an optically synchronized seed source for a high-power few-cycle OPCPA system, PhD thesis, Ludwig-Maximilians-Universität München, 2011

    Google Scholar 

  55. S. Klingebiel, C. Wandt, C. Skrobol, I. Ahmad, S.A. Trushin, Z. Major, F. Krausz, S. Karsch, High energy picosecond Yb:YAG CPA system at 10 Hz repetition rate for pumping optical parametric amplifiers. Opt. Express 19, 421–427 (2011)

    Article  ADS  Google Scholar 

  56. S. Klingebiel, I. Ahmad, C. Wandt, C. Skrobol, S.A. Trushin, Z. Major, F. Krausz, S. Karsch, Experimental and theoretical investigation of timing jitter inside a stretcher-compressor setup. Opt. Express 20, 3443–3455 (2012). https://doi.org/10.1364/OE.20.003443

    Article  ADS  Google Scholar 

  57. S. Klingebiel, Picosecond PumpDispersionManagement and Jitter Stabilization in a Petawatt-Scale Few-Cycle OPCPA System, PhD thesis, Ludwig-Maximilians-Universität München, 2013

    Google Scholar 

  58. C. Wandt, S. Klingebiel, S. Keppler, M. Hornung, C. Skrobol, A. Kessel, S. a. Trushin, Z. Major, J. Hein, M. C. Kaluza, F. Krausz, S. Karsch, Development of a Joule-class Yb:YAG amplifier and its implementation in a CPA system generating 1 TW pulses. Laser Photonic Rev. 881, 875–881 (2014). https://doi.org/10.1002/lpor.201400040

    Article  ADS  Google Scholar 

  59. C. Wandt, Development of a Joule-class Yb:YAG amplifier and its implementation in a CPA system generating 1 TWpulses, PhD thesis, Ludwig-Maximilians-Universität München, 2014

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Kessel .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kessel, A. (2018). Introduction. In: Generation and Parametric Amplification of Few‐Cycle Light Pulses at Relativistic Intensities. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-92843-2_1

Download citation

Publish with us

Policies and ethics