Skip to main content

Fundamental Principles of Variational Analysis

  • Chapter
  • First Online:
Variational Analysis and Applications

Part of the book series: Springer Monographs in Mathematics ((SMM))

  • 2942 Accesses

Abstract

This chapter is devoted to the exposition and developments of the fundamental principles of variational analysis, which play a crucial role in resolving many issues of variational theory and applications by employing optimization ideas and techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T. Q. Bao (2013), On a nonconvex separation theorem and the approximate extremal principle in Asplund spaces, Acta Math. Vietnam. 38, 279–291.

    Google Scholar 

  2. H. H. Bauschke, D. R. Luke, H. M. Phan and X. Wang (2013), Restricted normal cones and the method of alternating projections: theory, Set-Valued Var. Anal. 21, 431–473.

    Google Scholar 

  3. H. H. Bauschke, D. R. Luke, H. M. Phan and X. Wang (2013), Restricted normal cones and the method of alternating projections: applications, Set-Valued Var. Anal. 21, 475–501.

    Google Scholar 

  4. H. H. Bauschke, D. R. Luke, H. M. Phan and X. Wang (2014), Restricted normal cones and sparsity optimization with affine constraints, Found. Comput. Math. 14, 63–83.

    Google Scholar 

  5. J. M. Borwein and A. Jofré (1988), Nonconvex separation property in Banach spaces, Math. Methods Oper. Res. 48, 169–179.

    Google Scholar 

  6. J. M. Borwein, Y. Lucet and B. S. Mordukhovich (2000), Compactly epi-Lipschitzian convex sets and functions in normed spaces, J. Convex Anal. 7, 375–393.

    Google Scholar 

  7. J. M. Borwein, B. S. Mordukhovich and Y. Shao (1999), On the equivalence of some basic principles of variational analysis, J. Math. Anal. Appl. 229, 228–257.

    Google Scholar 

  8. J. M. Borwein and D. Preiss (1987), A smooth variational principle with applications to subdifferentiability and differentiability of convex functions, Trans. Amer. Math. Soc. 303, 517–527.

    Google Scholar 

  9. J. M. Borwein and H. M. Strójwas (1985), Tangential approximations, Nonlinear Anal. 9, 1347–1366.

    Google Scholar 

  10. J. M. Borwein and Q. J. Zhu (2005), Techniques of Variational Analysis, Springer, New York.

    MATH  Google Scholar 

  11. M. Cúth and M. Fabian (2016), Asplund spaces characterized by rich families and separable reduction of Fréchet subdifferentiability, J. Funct. Anal. 270, 1361–1378.

    Google Scholar 

  12. R. Deville, G. Godefroy and V. Zizler (1993), Smoothness and Renorming in Banach Spaces, Wiley, New York.

    MATH  Google Scholar 

  13. J. Diestel (1984), Sequences and Series in Banach Spaces, Springer, New York.

    Book  Google Scholar 

  14. D. Drusvyatskiy, A. D. Ioffe and A. S. Lewis (2015), Transversality and alternating projections for nonconvex sets, Found. Comput. Math. 15, 1637–1651.

    Google Scholar 

  15. A. Y. Dubovitskii and A. A. Milyutin (1965), Extremum problems in the presence of restrictions, USSR Comput. Maths. Math. Phys. 5, 1–80.

    Google Scholar 

  16. G. Eichfelder (2014), Variable Ordering Structures in Vector Optimization, Springer, Berlin.

    Book  Google Scholar 

  17. I. Ekeland (1972), Sur les problémes variationnels, C. R. Acad. Sci. Paris 275, 1057–1059.

    Google Scholar 

  18. I. Ekeland (1974), On the variational principle, J. Math. Anal. Appl. 47, 324–353.

    Google Scholar 

  19. I. Ekeland (1979), Nonconvex minimization problems, Bull. Amer. Math. Soc. 1, 432–467.

    Google Scholar 

  20. M. Fabian (1989), Subdifferentiability and trustworthiness in the light of a new variational principle of Borwein and Preiss, Acta Univ. Carolina, Ser. Math. Phys. 30, 51–56.

    Google Scholar 

  21. M. Fabian and B. S. Mordukhovich (1998), Smooth variational principles and characterizations of Asplund spaces, Set-Valued Anal. 6, 381–406.

    Google Scholar 

  22. M. Fabian and B. S. Mordukhovich (2002), Separable reduction and extremal principles in variational analysis, Nonlinear Anal. 49, 265–292.

    Google Scholar 

  23. M. Fabian and B. S. Mordukhovich (2003), Sequential normal compactness versus topological normal compactness in variational analysis, Nonlinear Anal. 54, 1057–1067.

    Google Scholar 

  24. S. D. Flåm (2006), Upward slopes and inf-convolutions, Math. Oper. Res. 31, 188–198.

    Google Scholar 

  25. C. Gerstewitz (Tammer) (1983), Ninchtkonvexe dualität in der vectoroptimierung, Wissenschaftliche Zeitschrift der TH Leuna-Merseburg 25, 357–364 (in German).

    Google Scholar 

  26. C. Gerth (Tammer) and P. Weidner (1990), Nonconvex separation theorems and some applications in vector optimization, J. Optim. Theory Appl. 67, 297–320.

    Google Scholar 

  27. A. Göpfert, H. Riahi, C. Tammer and C. Zălinescu (2003), Variational Methods in Partially Ordered Spaces, Springer, New York.

    MATH  Google Scholar 

  28. T. X. D. Ha (2012), The Fermat rule and Lagrange multiplier rule for various effective solutions to set-valued optimization problems expressed in terms of coderivatives, in Recent Developments in Vector Optimization, edited by Q. H. Ansari and J.-C. Yao, pp. 417–466, Springer, Berlin.

    Chapter  Google Scholar 

  29. J.-B. Hiriart-Urruty (1983), A short proof of the variational principle for approximate solutions of a minimization problem, Amer. Math. Monthly 90, 206–207.

    Google Scholar 

  30. A. D. Ioffe (1981), Calculus of Dini subdifferentials, CEREMADE Publication 8110, Universiteé de Paris IX “Dauphine”.

    Google Scholar 

  31. A. D. Ioffe (1981), Approximate subdifferentials of nonconvex functions, CEREMADE Publication 8120, Universiteé de Paris IX “Dauphine.”

    Google Scholar 

  32. A. D. Ioffe (1983), On subdifferentiability spaces, Ann. New York Acad. Sci. 410, 107–119.

    Google Scholar 

  33. A. D. Ioffe (1984), Approximate subdifferentials and applications, I: the finite dimensional theory, Trans. Amer. Math. Soc. 281, 389–415.

    Google Scholar 

  34. A. D. Ioffe (1989), Approximate subdifferentials and applications, III: the metric theory, Mathematika 36, 1–38.

    Google Scholar 

  35. A. D. Ioffe (2000), Codirectional compactness, metric regularity and subdifferential calculus, in Constructive, Experimental and Nonlinear Analysis, edited by M. Théra, pp. 123–164, American Mathematical Society, Providence, Rhode Island.

    MATH  Google Scholar 

  36. A. D. Ioffe (2017), Variational Analysis of Regular Mappings: Theory and Applications (2017), Springer, Cham, Switzerland.

    Book  Google Scholar 

  37. A. D. Ioffe and J. V. Outrata (2008), On metric and calmness qualification conditions in subdifferential calculus, Set-Valued Anal. 16, 199–228.

    Google Scholar 

  38. J. Jahn (2004), Vector Optimization: Theory, Applications and Extensions, Springer, Berlin.

    Book  Google Scholar 

  39. V. Jeyakumar and D. T. Luc (2008), Nonsmooth Vector Functions and Continuous Optimization, Springer, New York.

    MATH  Google Scholar 

  40. A. Jourani and L. Thibault (1996), Metric regularity and subdifferential calculus in Banach spaces, Set-Valued Anal. 3, 87–100.

    Google Scholar 

  41. A. Jourani and L. Thibault (1996), Extensions of subdifferential calculus rules in Banach spaces, Canad. J. Math. 48, 834–848.

    Google Scholar 

  42. R. Kasimbeyli (2010), A nonlinear cone separation theorem and scalarization in nonconvex vector optimization, SIAM J. Optim. 20, 1591–1619.

    Google Scholar 

  43. A. A. Khan, C. Tammer and C. Zălinescu (2015), Set-Valued Optimization. An Introduction with Applications, Springer, Berlin.

    MATH  Google Scholar 

  44. A. Y. Kruger (1981), Generalized differentials of nonsmooth functions, Depon. VINITI #1332-81, Moscow (in Russian).

    Google Scholar 

  45. A. Y. Kruger (1985), Generalized differentials of nonsmooth functions and necessary conditions for an extremum, Siberian Math. J. 26, 370–379.

    Google Scholar 

  46. A. Y. Kruger (2009), About stationarity and regularity in variational analysis, Taiwanese J. Math. 13, 1737–1785.

    Google Scholar 

  47. A. Y. Kruger and M. A. López (2012), Stationarity and regularity of infinite collections of sets, J. Optim. Theory Appl. 154, 339–369.

    Google Scholar 

  48. A. Y. Kruger and M. A. López (2012), Stationarity and regularity of infinite collections of sets. Applications to infinitely constrained optimization, J. Optim. Theory Appl. 155, 390–416.

    Google Scholar 

  49. A. Y. Kruger, D. R. Luke and N. M. Thao (2017), Set regularities and feasibility problems, Math. Program., DOI 10.1007/s10107-016-1039-x.

    Article  MATH  Google Scholar 

  50. A. Y. Kruger and B. S. Mordukhovich (1980), Generalized normals and derivatives, and necessary optimality conditions in nondifferential programming, I&II, Depon. VINITI: I# 408-80, II# 494-80, Moscow (in Russian).

    Google Scholar 

  51. A. Y. Kruger and B. S. Mordukhovich (1980), Extremal points and the Euler equation in nonsmooth optimization, Dokl. Akad. Nauk BSSR 24, 684–687 (in Russian).

    Google Scholar 

  52. A. S. Lewis, D. R. Luke, and J. Malick (2009), Local linear convergence for alternating and averaged nonconvex projections, Found. Comput. Math. 9, 485–513.

    Google Scholar 

  53. A. S. Lewis and J. Malick (2008), Alternating projection on manifolds, Math. Oper. Res. 33, 216–234.

    Google Scholar 

  54. G. Li, K. F. Ng and X. Y. Zheng (2007), Unified approach to some geometric results in variational analysis, J. Funct. Anal. 248 (2007), 317–343.

    Google Scholar 

  55. D. R. Luke (2012), Local linear convergence of approximate projections onto regularized sets, Nonlinear Anal. 75, 1531–1546.

    Google Scholar 

  56. D. R. Luke, N. H. Thao and M. K. Tam (2017), Quantitative convergence analysis of iterated expansive, set-valued mappings, to appear in Math. Oper. Res., arXiv:1605.05725.

    Google Scholar 

  57. B. S. Mordukhovich (1976), Maximum principle in problems of time optimal control with nonsmooth constraints, J. Appl. Math. Mech. 40, 960–969.

    Google Scholar 

  58. B. S. Mordukhovich (1980), Metric approximations and necessary optimality conditions for general classes of extremal problems, Soviet Math. Dokl. 22, 526–530.

    Google Scholar 

  59. B. S. Mordukhovich (1984), Nonsmooth analysis with nonconvex generalized differentials and adjoint mappings, Dokl. Akad. Nauk BSSR 28, 976–979 (in Russian).

    Google Scholar 

  60. B. S. Mordukhovich (1988), Approximation Methods in Problems of Optimization and Control, Nauka, Moscow (in Russian).

    MATH  Google Scholar 

  61. B. S. Mordukhovich (1994), Generalized differential calculus for nonsmooth and set-valued mappings, J. Math. Anal. Appl. 183, 250–288.

    Google Scholar 

  62. B. S. Mordukhovich (2000), Abstract extremal principle with applications to welfare economics, J. Math. Anal. Appl. 251, 187–216.

    Google Scholar 

  63. B. S. Mordukhovich (2004), Coderivative analysis of variational systems, J. Global Optim. 28, 347–362.

    Google Scholar 

  64. B. S. Mordukhovich (2006), Variational Analysis and Generalized Differentiation, I: Basic Theory, Springer, Berlin.

    Google Scholar 

  65. B. S. Mordukhovich (2006), Variational Analysis and Generalized Differentiation, II: Applications, Springer, Berlin.

    Google Scholar 

  66. B. S. Mordukhovich and N. M. Nam (2009), Variational analysis of generalized equations via coderivative calculus in Asplund spaces, J. Math. Anal. Appl. 350, 663–679.

    Google Scholar 

  67. B. S. Mordukhovich and N. M. Nam (2017), Extremality of convex sets with some applications, Optim. Lett. 11, 1201–1215.

    Google Scholar 

  68. B. S. Mordukhovich, N. M. Nam, R. B. Rector and T. Tran (2017), Variational geometric approach to generalized differential and conjugate calculi in convex analysis, Set-Valued Var. Anal. 25, 731–755.

    Google Scholar 

  69. B. S. Mordukhovich, N. M. Nam and N. D. Yen (2006), Fréchet subdifferential calculus and optimality conditions in nondifferentiable programming, Optimization 55, 685–396.

    Google Scholar 

  70. B. S. Mordukhovich and H. M. Phan (2011), Rated extremal principle for finite and infinite systems with applications to optimization, Optimization 60, 893–924.

    Google Scholar 

  71. B. S. Mordukhovich and H. M. Phan (2012), Tangential extremal principle for finite and infinite systems, I: basic theory, Math. Program. 136, 31–63.

    Google Scholar 

  72. B. S. Mordukhovich and H. M. Phan (2012), Tangential extremal principle for finite and infinite systems, II: applications to semi-infinite and multiobjective optimization, Math. Program. 136, 31–63.

    Google Scholar 

  73. B. S. Mordukhovich and Y. Shao (1995), Differential characterizations of covering, metric regularity, and Lipschitzian properties of multifunctions between Banach spaces, Nonlinear Anal. 25, 1401–1424.

    Google Scholar 

  74. B. S. Mordukhovich and Y. Shao (1996), Extremal characterizations of Asplund spaces, Proc. Amer. Math. Soc. 124, 197–205.

    Google Scholar 

  75. B. S. Mordukhovich and Y. Shao (1996), Nonsmooth sequential analysis in Asplund spaces, Trans. Amer. Math. Soc. 348, 1235–1280.

    Google Scholar 

  76. B. S. Mordukhovich and Y. Shao (1996), Nonconvex coderivative calculus for infinite-dimensional multifunctions, Set-Valued Anal. 4, 205–136.

    Google Scholar 

  77. B. S. Mordukhovich and Y. Shao (1997), Stability of multifunctions in infinite dimensions: point criteria and applications, SIAM J. Control Optim. 35, 285–314.

    Google Scholar 

  78. B. S. Mordukhovich and Y. Shao (1997), Fuzzy calculus for coderivatives of multifunctions, Nonlinear Anal. 29, 605–626.

    Google Scholar 

  79. B. S. Mordukhovich, J. S. Treiman and Q. J. Zhu (2003), An extended extremal principle with applications to multiobjective optimization, SIAM J. Optim. 14, 359–379.

    Google Scholar 

  80. B. S. Mordukhovich and B. Wang (2002), Necessary optimality and suboptimality conditions in nondifferentiable programming via variational principles, SIAM J. Control Optim. 41, 623–640.

    Google Scholar 

  81. B. S. Mordukhovich and B. Wang (2002), Extensions of generalized differential calculus in Asplund spaces, J. Math. Anal. Appl. 272, 164–186.

    Google Scholar 

  82. B. S. Mordukhovich and B. Wang (2003), Calculus of sequential normal compactness in variational analysis, J. Math. Anal. Appl. 282, 63–84.

    Google Scholar 

  83. N. V. Ngai and M. Théra (2001), Metric regularity, subdifferential calculus and applications, Set-Valued Anal. 9, 187–216.

    Google Scholar 

  84. D. Noll and A. Rondepierre (2016), On local convergence of the method of alternating projections, Found. Comput. Math. 16, 425–455.

    Google Scholar 

  85. J.-P. Penot (1998), Compactness properties, openness criteria and coderivatives, Set-Valued Anal. 6, 363–380.

    Google Scholar 

  86. J.-P. Penot (2013), Calculus without Derivatives, Springer, New York.

    Book  Google Scholar 

  87. R. R. Phelps (1993), Convex Functions, Monotone Operators and Differentiability, 2nd edition, Springer, Berlin.

    MATH  Google Scholar 

  88. R. T. Rockafellar (1970), Convex Analysis, Princeton University Press, Princeton, New Jersey.

    Book  Google Scholar 

  89. R. T. Rockafellar (1979), Directional Lipschitzian functions and subdifferential calculus, Proc. London Math. Soc. 39, 331–355.

    Google Scholar 

  90. R. T. Rockafellar (1980), Generalized directional derivatives and subgradients of nonconvex functions, Canad. J. Math. 32, 157–180.

    Google Scholar 

  91. R. T. Rockafellar (1985), Extensions of subgradient calculus with applications to optimization, Nonlinear Anal. 9, 665–698.

    Google Scholar 

  92. R. T. Rockafellar and R. J-B. Wets (1998), Variational Analysis, Springer, Berlin.

    Book  Google Scholar 

  93. W. Schirotzek (2007), Nonsmooth Analysis, Springer, Berlin.

    Book  Google Scholar 

  94. B. Wang and X. Yang (2016), Weak differentiability with applications to variational analysis, Set-Valued Var. Anal. 24, 299–321.

    Google Scholar 

  95. B. Wang and D. Wang (2015), Generalized sequential normal compactness in Asplund spaces, Applic. Anal. 94, 99–107.

    Google Scholar 

  96. X. Y. Zheng and K. F. Ng (2005), The Fermat rule for multifunctions in Banach spaces, Math. Program. 104, 69–90.

    Google Scholar 

  97. X. Y. Zheng and K. F. Ng (2006), The Lagrange multiplier rule for multifunctions in Banach spaces, SIAM J. Optim. 17, 1154–1175.

    Google Scholar 

  98. X. Y. Zheng and K. F. Ng (2011), A unified separation theorem for closed sets in a Banach spaces and optimality conditions for vector optimization, SIAM J. Optim. 21, 886–911.

    Google Scholar 

  99. Q. J. Zhu (1998), The equivalence of several basic theorems for subdifferentials, Set-Valued Anal. 6, 171–185.

    Google Scholar 

  100. Q. J. Zhu (2004), Nonconvex separation theorem for multifunctions, subdifferential calculus and applications, Set-Valued Anal. 12, 275–290.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mordukhovich, B.S. (2018). Fundamental Principles of Variational Analysis. In: Variational Analysis and Applications. Springer Monographs in Mathematics. Springer, Cham. https://doi.org/10.1007/978-3-319-92775-6_2

Download citation

Publish with us

Policies and ethics