Skip to main content

The Expressed Portion of the Barley Genome

  • Chapter
  • First Online:
The Barley Genome

Abstract

In this chapter, we refer to the expressed portion of the barley genome as the relatively small fraction of the total cellular DNA that either contains the genes that ultimately produce proteins, or that directly/indirectly controls the level, location and/or timing of when these genes are expressed and proteins are produced. We start by describing the dynamics of tissue and time-dependent gene expression and how common patterns across multiple samples can provide clues about gene networks involved in common biological processes. We then describe some of the complexities of how a single mRNA template can be differentially processed by alternative splicing to generate multiple different proteins or provide a mechanism to regulate the amount of functional gene product in a cell at a given point in time. We extend our analysis, using a number of biological examples, to address how diverse families of small non-coding microRNAs specifically regulate gene expression, and complete our appraisal by looking at the physical/molecular environment around genes that can result in either the promotion or repression of gene expression. We conclude by assessing some of the issues that remain around our ability to fully exploit the depth and power of current approaches for analysing gene expression and propose improvements that could be made using new but available sequencing and bioinformatics technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bai B, Bian H, Zeng Z, Hou N, Shi B, Wang J, Zhu M, Han N (2017a) miR393-mediated auxin signaling regulation is involved in root elongation inhibition in response to toxic aluminum stress in barley. Plant Cell Physiol 58:426–439

    PubMed  CAS  Google Scholar 

  • Bai B, Shi B, Hou N, Cao Y, Meng Y, Bian H, Zhu M, Han N (2017b) miRNAs participate in gene expression regulation and phytohormone cross-talk in barley embryo during seed development and germination. BMC Plant Biol 17(1):150

    Google Scholar 

  • Baker K, Dhillon T, Colas I, Cook N, Milne I, Cardle L, Bayer M, Flavell AJ (2015) Chromatin state analysis of the barley epigenome reveals a higher order structure defined by H3K27me1 and H3K27me3 abundance. Plant J. 84:111–124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baker K, Bayer M, Cook N, Dreißig S, Dhillon T, Russell J, Hedley PE, Morris J, Ramsay L, Colas I, Waugh R, Steffenson B, Milne I, Stephen G, Marshall D, Flavell AJ(2014) The low-recombining pericentromeric region of barley restricts gene diversity and evolution but not gene expression. Plant J 79 (6):981–992

    Google Scholar 

  • Berger SL (2007) The complex language of chromatin regulation during transcription. Nature 447:407–412

    Article  CAS  PubMed  Google Scholar 

  • Borges F, Martienssen RA (2015) The expanding world of small RNAs in plants. Nat Rev Mol Cell Bio 16:727–741

    Article  CAS  Google Scholar 

  • Bull H, Casao MC, Zwirek M, Flavell AJ, Thomas WTB, Guo W, Zhang R, Rapazote-Flores P, Kyriakidis S, Russell J, Druka A, McKim SM, Waugh R(2017) Barley SIX-ROWED SPIKE3 encodes a putative Jumonji C-type H3K9me2/me3 demethylase that represses lateral spikelet fertility. Nat Commun 8 (1)

    Google Scholar 

  • Busch A, Hertel KJ (2012) Extensive regulation of NAGNAG alternative splicing: new tricks for the spliceosome? Genome Biol 13:143

    Article  PubMed  PubMed Central  Google Scholar 

  • Calixto CP, Simpson CG, Waugh R, Brown JWS (2016) Alternative splicing of barley clock genes in response to low temperature. PLoS ONE 11:e0168028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Close TJ, Wanamaker SI, Caldo RA, Turner SM, Ashlock DA, Dickerson JA, Wing RA, Muehlbauer GJ, Kleinhofs A, Wise RP (2004) A new resource for cereal genomics: 22K barley GeneChip comes of age. Plant Physiol 134:960–968

    Google Scholar 

  • Colaiacovo M, Subacchi A, Bagnaresi P, Lamontanara A, Cattivelli L, Faccioli P (2010) A computational-based update on microRNAs and their targets in barley (Hordeum vulgare L.). BMC Genomics 11. https://doi.org/10.1186/1471-2164-11-595

  • Curaba J, Spriggs A, Taylor J, Li Z, Helliwell C (2012) miRNA regulation in the early development of barley seed. BMC Plant Biol 12. https://doi.org/10.1186/1471-2229-12-120

  • Dass SS, Karmakar P, Nandi AK, Sanan-Minshra N (2015) Small RNA mediated regulation of seed germination. Front Plant Sci 6:828

    Google Scholar 

  • Deng PC, Wang L, Cui LC, Feng KW, Liu FY, Du XH, Tong W, Nie XJ, Ji WQ, Weining S (2015) Global identification of microRNAs and their targets in barley under salinity stress. Plos One 10. https://doi.org/10.1371/journal.pone.0137990

  • Dorn ES, Cook JG (2011) Nucleosomes in the neighborhood: new roles for chromatin modifications in replication origin control. Epigenetics 6:552–559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Efroni I, Birnbaum KD (2016) The potential of single-cell profiling in plants. Genome Biol 17:65. https://doi.org/10.1186/s13059-016-0931-2

    Article  PubMed  PubMed Central  Google Scholar 

  • Fard EM, Bakhshi B, Keshavarznia R, Nikpay N, Shahbazi M, Salekdeh GH (2017) Drought responsive microRNAs in two barley cultivars differing in their level of sensitivity to drought stress. Plant Physiol Biochem 118:121–129

    Article  CAS  PubMed  Google Scholar 

  • Fromm B, Billipp T, Peck LE, Johansen M, Tarver JE, King BL, Newcomb JM, Sempere LF, Flatmark K, Hovig E et al (2015) A uniform system for the annotation of vertebrate microRNA genes and the evolution of the human microRNAome. Annu Rev Genet 49:213–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gadjieva R, Axelsson E, Olsson U, Vallon-Christersson J, Hansson M (2004) Nonsense-mediated mRNA decay in barley mutants allows the cloning of mutated genes by a microarray approach. Plant Physiol Biochem 42:681–685

    Article  CAS  PubMed  Google Scholar 

  • Giacomello S, Salmén F, Terebieniec BK, Vickovic S, Navarro JF, Alexeyenko A, ReimegÃ¥rd J, McKee LS, Mannapperuma C, Bulone V, StÃ¥hl PL, Sundström JF, Street NR, Lundeberg J (2017) Spatially resolved transcriptome profiling in model plant species. Nat Plants 3:17061

    Article  CAS  PubMed  Google Scholar 

  • Gloggnitzer J, Akimcheva S, Srinivasan A, Kusenda B, Riehs N, Stampfl H, Bautor J, Dekrout B, Jonak C, Jiménez-Gómez JM, Parker JE, Riha K (2014) Nonsense-mediated mRNA decay modulates immune receptor levels to regulate plant antibacterial defense. Cell Host Microbe 16:376–390

    Article  CAS  PubMed  Google Scholar 

  • Guo L, Liu C-M (2016) A single-nucleotide exon found in Arabidopsis. Sci Rep 5 (1)

    Google Scholar 

  • Hackenberg M, Gustafson P, Langridge P, Shi BJ (2015) Differential expression of microRNAs and other small RNAs in barley between water and drought conditions. Plant Biotechnol J 13:2–13

    Article  CAS  PubMed  Google Scholar 

  • Hackenberg M, Huang PJ, Huang CY, Shi BJ, Gustafson P, Langridge P (2013) A comprehensive expression profile of MicroRNAs and other classes of non-coding small RNAs in barley under phosphorous-deficient and -sufficient conditions. DNA Res 20:109–125

    Article  CAS  PubMed  Google Scholar 

  • Halterman DA, Wei F, Wise RP (2003) Powdery mildew-induced Mla mRNAs are alternatively spliced and contain multiple upstream open reading frames. Plant Physiol 131:558–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hove RM, Ziemann M, Bhave M (2015) Identification and expression analysis of the barley (Hordeum vulgare L.) aquaporin gene family. PLoS ONE 10:e0128025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • International Barley Genome Sequencing Consortium (IBGSC) (2012) A physical, genetic and functional sequence assembly of the barley genome. Nature 491:711–716

    Article  CAS  Google Scholar 

  • Jenuwein T, Allis CD (2001) Translating the histone code. Science 293:1074–1080

    Article  CAS  Google Scholar 

  • Jones-Rhoades MW, Bartel DP, Bartel B (2006) MicroRNAS and their regulatory roles in plants. Annu Rev Plant Biol 57:19–53

    Article  CAS  Google Scholar 

  • Kalyna M, Simpson CG, Syed NH, Lewandowska D, Marquez Y, Kusenda B, Marshall J, Fuller J, Cardle L, McNicol J, Dinh HQ, Barta A, Brown JWS (2012) Alternative splicing and nonsense-mediated decay modulate expression of important regulatory genes in Arabidopsis. Nucleic Acids Res 40:2454–2469

    Article  CAS  PubMed  Google Scholar 

  • Kantar M, Unver T, Budak H (2010) Regulation of barley miRNAs upon dehydration stress correlated with target gene expression. Funct Integr Genomic 10:493–507

    Article  CAS  Google Scholar 

  • Karam R, Wengrod J, Gardner LB, Wilkinson MF (2013) Regulation of nonsense-mediated mRNA decay: implications for physiology and disease. Biochim Biophys Acta 1829:624–633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koroban NV, Kudryavtseva AV, Krasnov GS, Sadritdinova AF, Fedorova MS, Snezhkina AV, Bolsheva NL, Muravenko OV, Dmitriev AA, Melnikova NV (2016) The role of microRNA in abiotic stress response in plants. Mol Biol 50:337–343

    Article  CAS  Google Scholar 

  • Kozomara A, Griffiths-Jones S (2014) miRBase: annotating high confidence miRNAs using deep sequencing data. Nucleic Acids Res 42:D68–D73

    Article  CAS  PubMed  Google Scholar 

  • Li S, Castillo-González C, Yu B, Zhang X (2017) The functions of plant small RNAs in development and in stress responses. Plant J 90:654–670

    Article  CAS  PubMed  Google Scholar 

  • Li X, Shin S, Heinen S, Dill-Macky R, Berthiller F, Nersesian N, Clemente T, McCormick S, Muehlbauer GJ (2015) Transgenic wheat expressing a barley UDP-glucosyltransferase detoxifies deoxynivalenol and provides high levels of resistance to Fusarium graminearum. Mol Plant Microbe Interact 28:1237–1246

    Article  CAS  PubMed  Google Scholar 

  • Locascio A, Roig-Villanova I, Bernardi J, Varotto S (2014) Current perspectives on the hormonal control of seed development in Arabidopsis and maize: a focus on auxin. Front Plant Sci 5:412

    Article  PubMed  PubMed Central  Google Scholar 

  • Lv SZ, Nie XJ, Wang L, Du XH, Biradar SS, Jia XO, Weining S (2012) Identification and characterization of microRNAs from barley (Hordeum vulgare L.) by high-throughput sequencing. Int J Mol Sci 13:2973–2984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marquez Y, Brown JWS, Simpson CG, Barta A, Kalyna M (2012) Transcriptome survey reveals increased complexity of the alternative splicing landscape in Arabidopsis. Genome Res 22:1184–1195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mascher M, Gundlach H, Himmelbach A, Beier S, Twardziok SO, Wicker T, Radchuk V, Dockter C, Hedley PE, Russell J, Bayer M, Ramsay L, Liu H, Haberer G, Zhang XQ, Zhang Q, Barrero RA, Li L, Taudien S, Groth M, Felder M, Hastie A, Å imková H, Staňková H, Vrána J, Chan S, Muñoz-Amatriaín M, Ounit R, Wanamaker S, Bolser D, Colmsee C, Schmutzer T, Aliyeva-Schnorr L, Grasso S, Tanskanen J, Chailyan A, Sampath D, Heavens D, Clissold L, Cao S, Chapman B, Dai F, Han Y, Li H, Li X, Lin C, McCooke JK, Tan C, Wang P, Wang S, Yin S, Zhou G, Poland JA, Bellgard MI, Borisjuk L, Houben A, Doležel J, Ayling S, Lonardi S, Kersey P, Langridge P, Muehlbauer GJ, Clark MD, Caccamo M, Schulman AH, Mayer KFX, Platzer M, Close TJ, Scholz U, Hansson M, Zhang G, Braumann I, Spannagl M, Li C, Waugh R, Stein N (2017) A chromosome conformation capture ordered sequence of the barley genome. Nature 544:427–433

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto T, Tanaka T, Sakai H, Amano N, Kanamori H, Kurita K, Kikuta A, Kamiya K, Yamamoto M, Ikawa H, Fujii N, Hori K, Itoh T, Sato K (2011) Comprehensive sequence analysis of 24,783 barley full-length cDNAs derived from 12 clone libraries. Plant Physiol 156:20–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McKibbin RS, Wilkinson MD, Bailey PC, Flintham JE, Andrew LM, Lazzeri PA, Gale MD, Lenton JR, Holdsworth MJ (2002) Transcripts of Vp-1 homeologues are misspliced in modern wheat and ancestral species. Proc Natl Acad Sci USA 99:10203–10208

    Article  CAS  PubMed  Google Scholar 

  • Meng F, Liu H, Wang K, Liu L, Wang S, Zhao Y, Yin J, Li Y (2013) Development-associated microRNAs in grains of wheat (Triticum aestivum L.). BMC Plant Biol 13:140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Min XJ, Powell B, Braessler J, Meinken J, Yu F, Sablok G (2015) Genome-wide cataloging and analysis of alternatively spliced genes in cereal crops. BMC Genomics 16(1):721

    Google Scholar 

  • Mochida K, Uehara-Yamaguchi Y, Yoshida T, Sakurai T, Shinozaki K (2011) Global landscape of a co-expressed gene network in barley and its application to gene discovery in Triticeae crops. Plant Cell Physiol 52:785–803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakabayashi K, Okamoto M, Koshiba T, Kamiya Y, Nambara E (2005) Genome-wide profiling of stored mRNA in Arabidopsis thaliana seed germination: epigenetic and genetic regulation of transcription in seed. Plant J 41:697–709

    Article  CAS  PubMed  Google Scholar 

  • Ozhuner E, Eldem V, Ipek A, Okay S, Sakcali S, Zhang BH, Boke H, Unver T (2013) Boron stress responsive microRNAs and their targets in barley. Plos One 8. https://doi.org/10.1371/journal.pone.0059543

  • Panahi B, Mohammadi SA, Ebrahimi Khaksefidi R, Fallah Mehrabadi J, Ebrahimie E (2015) Genome-wide analysis of alternative splicing events in Hordeum vulgare: highlighting retention of intron-based splicing and its possible function through network analysis. FEBS Lett 589:3564–3575

    Article  CAS  PubMed  Google Scholar 

  • Pingault L, Choulet F, Alberti A, Glover N, Wincker P, Feuillet C, Paux E (2015) Deep transcriptome sequencing provides new insights into the structural and functional organization of the wheat genome. Genome Biol 16:29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reddy AS (2007) Alternative splicing of pre-messenger RNAs in plants in the genomic era. Annu Rev Plant Biol 58:267–294

    Article  CAS  PubMed  Google Scholar 

  • Reddy AS, Marquez Y, Kalyna M, Barta A (2013) Complexity of the alternative splicing landscape in plants. Plant Cell 25:3657–3683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reinhart BJ, Weinstein EG, Rhoades MW, Bartel B, Bartel DP (2002) MicroRNAs in plants (vol 16, pg 1616, 2002). Gene Dev 16:2313

    Article  CAS  Google Scholar 

  • Rodríguez-Suárez C, Atienza SG, Pistón F (2011) Allelic variation, alternative splicing and expression analysis of Psy1 gene in Hordeum chilense Roem. et Schult. PLoS ONE 6:e19885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roudier F, Ahmed I, Bérard C et al (2011) Integrative epigenomic mapping defines four main chromatin states in Arabidopsis. EMBO J 30:1928–1938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmitz J, Franzen R, Ngyuen TH, Garcia-Maroto F, Pozzi C, Salamini F, Rohde W (2000) Cloning, mapping and expression analysis of barley MADS-box genes. Plant Mol Biol 42:899–913

    Article  CAS  PubMed  Google Scholar 

  • Schreiber AW, Shi BJ, Huang CY, Langridge P, Baumann U (2011) Discovery of barley miRNAs through deep sequencing of short reads. BMC Genomics 12. https://doi.org/10.1186/1471-2164-12-129

  • Shahzad K, Rauf M, Ahmed M, Malik ZA, Habib I, Ahmed Z, Mahmood K, Ali R, Masmoudi K, Lemtiri-Chlieh F, Gehring C, Berkowitz GA, Saeed NA (2015) Functional characterisation of an intron retaining K(+) transporter of barley reveals intron-mediated alternate splicing. Plant Biol (Stuttg) 17:840–851

    Article  CAS  Google Scholar 

  • Shen L, Gong J, Caldo RA, Nettleton D, Cook D, Wise RP, Dickerson JA (2005) BarleyBase—an expression profiling database for plant genomics. Nucleic Acids Res 1:33

    Google Scholar 

  • Shi Y, Sha G, Sun X (2014) Genome-wide study of NAGNAG alternative splicing in Arabidopsis. Planta 239:127–138

    Article  CAS  PubMed  Google Scholar 

  • Silva AT, Ribone PA, Chan RL, Ligterink W, Hilhorst HW (2016) A predictive coexpression network identifies novel genes controlling the seed-to-seedling phase transition in arabidopsis thaliana. Plant Physiol 170:2218–2231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sreenivasulu N, Usadel B, Winter A, Radchuk V, Scholz U, Stein N, Weschke W, Strickert M, Close TJ, Stitt M et al (2008) Barley grain maturation and germination: metabolic pathway and regulatory network commonalities and differences highlighted by new MapMan/PageMan profiling tools. Plant Physiol 146:1738–1758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Staiger D, Brown JWS (2013) Alternative splicing at the intersection of biological timing, development, and stress responses. Plant Cell 25:3640–3656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thorbjørnsen T, Villand P, Kleczkowski LA, Olsen OA (1996) A single gene encodes two different transcripts for the ADP-glucose pyrophosphorylase small subunit from barley (Hordeum vulgare). Biochem J 313:149–154

    Article  PubMed  PubMed Central  Google Scholar 

  • van Esse GW, Walla A, Finke A, Koornneef M, Pecinka A, von Korff M, (2017) Six-Rowed Spike3 (VRS3) is a histone demethylase that controls lateral spikelet development in barley. Plant Physiol 174 (4):2397–2408

    Google Scholar 

  • Walters B, Lum G, Sablok G, Min XJ (2013) Genome-wide landscape of alternative splicing events in Brachypodium distachyon. DNA Res 20:163–171

    Google Scholar 

  • Wu XM, Hornyik C, Bayer M, Marshall D, Waugh R, Zhang RX (2014) In silico identification and characterization of conserved plant microRNAs in barley. Cent Eur J Biol 9:841–852

    CAS  Google Scholar 

  • Xu W, Meng Y, Wise RP (2014) Mla- and Rom1-mediated control of microRNA398 and chloroplast copper/zinc superoxide dismutase regulates cell death in response to the barley powdery mildew fungus. New Phytol 201:1396–1412

    Article  CAS  PubMed  Google Scholar 

  • Xue GP, Loveridge CW (2004) HvDRF1 is involved in abscisic acid-mediated gene regulation in barley and produces two forms of AP2 transcriptional activators, interacting preferably with a CT-rich element. Plant J 37:326–339

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Li L (2011) miRDeep-P: a computational tool for analyzing the microRNA transcriptome in plants. Bioinformatics 27:2614–2615

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Zhang X, Pettolino F, Zhou G, Li C (2016a) Changes in cell wall polysaccharide composition, gene transcription and alternative splicing in germinating barley embryos. J Plant Physiol 191:127–139

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Zhang X, Wang S, Tan C, Zhou G, Li C (2016b) Involvement of alternative splicing in barley seed germination. PLoS ONE 11:e0152824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang R, Tucker MR, Burton RA, Shirley NJ, Little A, Morris J, Milne L, Houston K, Hedley PE, Waugh R, Fincher GB (2016c) The dynamics of transcript abundance during cellularization of developing barley endosperm. Plant Physiol 170:1549–1565

    PubMed  PubMed Central  CAS  Google Scholar 

  • Zhiguo E, Wang L, Zhou J (2013) Splicing and alternative splicing in rice and humans. BMB Rep 46:439–447

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robbie Waugh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Simpson, C.G. et al. (2018). The Expressed Portion of the Barley Genome. In: Stein, N., Muehlbauer, G. (eds) The Barley Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-319-92528-8_7

Download citation

Publish with us

Policies and ethics