Skip to main content

Barley Inflorescence Architecture

  • Chapter
  • First Online:
The Barley Genome

Part of the book series: Compendium of Plant Genomes ((CPG))

Abstract

Cultivated barley, Hordeum vulgare ssp. vulgare, is the fourth most abundantly grown cereal in the world (www.fao.org/faostat) and is long associated with human civilisations. Although most barley grain grown today is destined for animal feed and malting, barley remains an important source of primary calories in many parts of the world. Increasing barley yield in the face of challenges posed by increasing world population and climate change is a major goal of current research efforts. Grain is the ultimate product of inflorescence development and maturation. As such, understanding the genetics underlying inflorescence architecture in barley and then learning how to apply this knowledge to manipulate inflorescence development are important steps towards improving yield. The barley reference genome sequence represents an invaluable resource to support the identification and functional characterization of genes controlling inflorescence architecture. Resolving the relationships between gene and inflorescence traits are critical to support breeding as well as to provide insight about fundamental questions in cereal developmental biology. In this chapter, we first provide an overview of inflorescence development in cereals, highlighting the transitions in meristem identity associated with species-specific architectures. From here, we describe the development of key morphological features associated with the barley spike, spikelet, floret and grain, while discussing the identification and functions of genes which regulate their development. We also discuss those genes whose variation contributed to architectural changes during domestication and those with yield potential. Lastly, we describe environmental control of inflorescence development, with special attention to flowering time and the agronomic environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Abebe T, Wise RP, Skadsen RW (2009) Comparative transcriptional profiling established the awn as the major photosynthetic organ of the barley spike while the lemma and the palea primarily protect the seed. Plant Genome 2:247–259

    Article  CAS  Google Scholar 

  • Åberg E, Wiebe G (1945) Ash content of barley awns and kernels as influenced by location, season and variety. J Agron 37:583–586

    Article  Google Scholar 

  • Aharoni A, Dixit S, Jetter R, Thoenes E, van Arkel G et al (2004) The SHINE clade of AP2 domain transcription factors activates wax biosynthesis, alters cuticle properties, and confers drought tolerance when overexpressed in arabidopsis. Plant Cell 16:2463–2480

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Alqudah AM, Schnurbusch T (2014) Awn primordium to tipping is the most decisive developmental phase for spikelet survival in barley. Funct Plant Biol 41:424–436

    Article  PubMed  Google Scholar 

  • Alqudah AM, Sharma R, Pasam RK, Graner A, Kilian B et al (2014) Genetic dissection of photoperiod response based on GWAS of pre-anthesis phase duration in spring barley. PLoS ONE 9:e113120

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Alqudah AM, Koppolu R, Wolde GM, Graner A, Schnurbusch T (2016) The genetic architecture of barley plant stature. Front Genet 7

    Google Scholar 

  • Amanda S-L, Harry K, Amanda F, Madelaine B (2017) Grass flowers: an untapped resource for floral evo-devo. J Syst Evol 55:525–541

    Google Scholar 

  • Arber A (1934) The Gramineae: a study of cereal, bamboo, and grass. Cambridge University Press, New York

    Google Scholar 

  • Ariyadasa R, Mascher M, Nussbaumer T, Schulte D, Frenkel Z, Poursarebani N, Zhou R, Steuernagel B, Gundlach H, Taudien S, Felder M, Platzer M, Himmelbach A, Schmutzer T, Hedley PE, Muehlbauer GJ, Scholz U, Korol A, Mayer KFX, Waugh R, Langridge P, Graner A, Stein N (2014) A sequence-ready physical map of barley anchored genetically by two million single-nucleotide polymorphisms. Plant Physiol 164:412–423

    Article  PubMed  CAS  Google Scholar 

  • Aukerman MJ, Sakai H (2003) Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes. The Plant Cell 15:2730–2741

    Google Scholar 

  • Bell AD (1991) Plant form: an illustrated guide to flowering plant morphology. Oxford University Press, Oxford

    Google Scholar 

  • Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, Lahaye T, Nickstadt A, Bonas U (2009) Breaking the code of DNA binding specificity of TAL-type III Effectors. Science 326:1509–1512

    Article  PubMed  CAS  Google Scholar 

  • Boden SA, Weiss D, Ross JJ, Davies NW, Trevaskis B et al (2014) EARLY FLOWERING3 regulates flowering in spring barley by mediating gibberellin production and FLOWERING LOCUS T expression. Plant Cell 26:1557–1569

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bommert P, Satoh-Nagasawa N, Jackson D, Hirano H-Y (2005) Genetics and evolution of inflorescence and flower development in grasses. Plant Cell Physiol 46:69–78

    Article  PubMed  CAS  Google Scholar 

  • Bonnett OT (1935) The development of the barley spike. J Agric Res 51:451–457

    Google Scholar 

  • Bortiri E, Chuck G, Vollbrecht E, Rocheford T, Martienssen R et al (2006) ramosa2 encodes a LATERAL ORGAN BOUNDARY domain protein that determines the fate of stem cells in branch meristems of maize. Plant Cell 18:574–585

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bossinger GLU, Rohde W, Salamini F (1992) Genetics of plant development in barley. In: Munck L (ed) Barley genetics VI. Munksgaard International Publishers, Copenhagen, Denmark, pp 989–1017

    Google Scholar 

  • Brennan M, Shepherd T, Mitchell S, Topp CFE, Hoad SP (2017) Husk to caryopsis adhesion in barley is influenced by pre- and post-anthesis temperatures through changes in a cuticular cementing layer on the caryopsis. BMC Plant Biol 17:169

    Google Scholar 

  • Brown RH, Bregitzer P (2011) A Ds insertional mutant of a barley mir172 gene results in indeterminate spikelet development. Crop Sci 51:1664–1672

    Article  CAS  Google Scholar 

  • Bull H, Casao MC, Zwirek M, Flavell AJ, Thomas WTB et al (2017) Barley SIX-ROWED SPIKE3 encodes a putative Jumonji C-type H3K9me2/me3 demethylase that represses lateral spikelet fertility. Nat Commun 8(1):936

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Caldwell DG, McCallum N, Shaw P, Muehlbauer GJ, Marshall DF, Waugh R (2004) A structured mutant population for forward and reverse genetics in Barley (Hordeum vulgare L.). Plant J 40:143–150

    Article  PubMed  CAS  Google Scholar 

  • Campoli C, Drosse B, Searle I, Coupland G, von Korff M (2012) Functional characterisation of HvCO1, the barley (Hordeum vulgare) flowering time ortholog of CONSTANS. Plant J 69:868–880

    Article  PubMed  CAS  Google Scholar 

  • Campoli C, Pankin A, Drosse B, Casao CM, Davis SJ et al (2013) HvLUX1 is a candidate gene underlying the early maturity 10 locus in barley: phylogeny, diversity, and interactions with the circadian clock and photoperiodic pathways. New Phytol 199:1045–1059

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Carriedo LG, Maloof JN, Brady SM (2016) Molecular control of crop shade avoidance. Curr Opin Plant Biol 30:151–158

    Article  PubMed  CAS  Google Scholar 

  • Casal JJ (1988) Persistent effects of changes in phytochrome status on internode growth in light-grown mustard: Occurrence, kinetics and locus of perception. Planta 175:214–220

    Article  PubMed  CAS  Google Scholar 

  • Casal JJ, Deregibus VA (1986) The effect of plant density on tillering: the involvement of R/FR ratio and the proportion of radiation intercepted per plant. Environ Exp Bot 26:365–371

    Article  Google Scholar 

  • Chen X (2004) A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science 303:2022–2025

    Google Scholar 

  • Chen A, Dubcovsky J (2012) Wheat TILLING mutants show that the vernalization gene VRN1 down-regulates the flowering repressor VRN2 in leaves but is not essential for flowering. PLoS Genet 8:e1003134

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chono M, Honda I, Zeniya H, Yoneyama K, Saisho D et al (2003) A semidwarf phenotype of barley uzu results from a nucleotide substitution in the gene encoding a putative brassinosteroid receptor. Plant Physiol 133:1209–1219

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chuck G, Muszynski M, Kellogg E, Hake S, Schmidt RJ (2002) The control of spikelet meristem identity by the branched silkless1 gene in maize. Science 298:1238–1241

    Article  PubMed  CAS  Google Scholar 

  • Close TJ, Bhat PR, Lonardi S, Wu YH, Rostoks N, Ramsay L, Druka A, Stein N, Svensson JT, Wanamaker S, Bozdag S, Roose ML, Moscou MJ, Chao SAM, Varshney RK, Szucs P, Sato K, Hayes PM, Matthews DE, Kleinhofs A, Muehlbauer GJ, DeYoung J, Marshall DF, Madishetty K, Fenton RD, Condamine P, Graner A, Waugh R (2009) Development and implementation of high-throughput SNP genotyping in barley. BMC Genomics 10:582

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cockram J, Jones H, Leigh FJ, O’Sullivan D, Powell W et al (2007) Control of flowering time in temperate cereals: genes, domestication, and sustainable productivity. J Exp Bot 58:1231–1244

    Article  PubMed  CAS  Google Scholar 

  • Cockram J, Horsnell R, Soh EH, Norris C, O’Sullivan DM (2015) Molecular and phenotypic characterization of the alternative seasonal growth habit and flowering time in barley (Hordeum vulgare ssp. vulgare L.). Mol Breed 35:165

    Google Scholar 

  • Coen ES, Nugent JM (1994) Evolution of flowers and inflorescences. Development 1994:107–116

    Google Scholar 

  • Colmsee C, Beier S, Himmelbach A, Schmutzer T, Stein N, Scholz U, Mascher M (2015) BARLEX—the Barley draft genome explorer. Mol Plant 8:964–966

    Article  PubMed  CAS  Google Scholar 

  • Comadran J, Kilian B, Russell J, Ramsay L, Stein N, Ganal M, Shaw P, Bayer M, Thomas W, Marshall D, Hedley P, Tondelli A, Pecchioni N, Francia E, Korzun V, Walther A, Waugh R (2012) Natural variation in a homolog of Antirrhinum CENTRORADIALIS contributed to spring growth habit and environmental adaptation in cultivated barley. Nat Genet 44:1388–1392

    Article  PubMed  CAS  Google Scholar 

  • Dabbert T, Okagaki RJ, Cho S, Heinen S, Boddu J et al (2010) The genetics of barley low-tillering mutants: low number of tillers-1 (lnt1). Theor Appl Genet 121:705–715

    Article  PubMed  CAS  Google Scholar 

  • Danyluk J, Kane NA, Breton G, Limin AE, Fowler DB et al (2003) TaVRT-1, a putative transcription factor associated with vegetative to reproductive transition in cereals. Plant Physiol 132:1849–1860

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Debernardi JM, Lin H, Chuck G, Faris JD, Dubcovsky J (2017) microRNA172 plays a crucial role in wheat spike morphogenesis and grain threshability. Development 144:1966–1975

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Derbyshire P, Byrne ME (2013) MORE SPIKELETS1 is required for spikelet fate in the inflorescence of brachypodium. Plant Physiol 161:1291–1302

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Digel B, Pankin A, von Korff M (2015) Global transcriptome profiling of developing leaf and shoot apices reveals distinct genetic and environmental control of floral transition and inflorescence development in barley. Plant Cell 27:2318–2334

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Djalali M (1970) Investigations on expressivity and penetrance of labile character of barley (Hordeum vulgare L.). Z Pflanzenzüchtung 63:274–322

    Google Scholar 

  • Dockter C, Gruszka D, Braumann I, Druka A, Druka I et al (2014) Induced variations in brassinosteroid genes define barley height and sturdiness, and expand the green revolution genetic toolkit. Plant Physiol 166:1912–1927

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Doebley J, Stec A, Hubbard L (1997) The evolution of apical dominance in maize. Nature 386:485–488

    Article  PubMed  CAS  Google Scholar 

  • Doust A (2007) Architectural evolution and its implications for domestication in grasses. Ann Bot 100:941–950

    Article  PubMed  PubMed Central  Google Scholar 

  • Druka A, Franckowiak J, Lundqvist U, Bonar N, Alexander J, Houston K, Radovic S, Shahinnia F, Vendramin V, Morgante M, Stein N, Waugh R (2011) Genetic dissection of barley morphology and development. Plant Physiol 155:617–627

    Article  PubMed  CAS  Google Scholar 

  • Drummond RSM, Janssen BJ, Luo Z, Oplaat C, Ledger SE et al (2015) Environmental control of branching in Petunia. Plant Physiol 168:735–751

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Duan R, Xiong H, Wang A, Chen G (2015) Molecular mechanisms underlying hull-caryopsis adhesion/separation revealed by comparative transcriptomic analysis of covered/naked barley (Hordeum vulgare l.). Int J Mol Sci 16:14181

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Eklund DM, Ståldal V, Valsecchi I, Cierlik I, Eriksson C et al (2010) The Arabidopsis thaliana STYLISH1 protein acts as a transcriptional activator regulating auxin biosynthesis. Plant Cell 22:349–363

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Endress PK (2010) Disentangling confusions in inflorescence morphology: patterns and diversity of reproductive shoot ramification in angiosperms. J Syst Evol 48:225–239

    Article  Google Scholar 

  • Endress PK (2011) Evolutionary diversification of the flowers in angiosperms. Am J Bot 98:370–396

    Article  PubMed  Google Scholar 

  • Engeldow FL (1920) Inheritance in barley. I. The lateral florets and the rachilla. J Genet 10:93–108

    Article  Google Scholar 

  • Engledow F (1921) Inheritance in barley. II. The awn and the lateral floret. J Agric Sci 11:159–196

    Article  Google Scholar 

  • Engledow FL (1924) Inheritance in barley. III. The awn and the lateral floret (cont’d): fluctuation: a linkage: multiple allelomorphs. J Genet 14:49–87

    Article  Google Scholar 

  • Eveland AL, Goldshmidt A, Pautler M, Morohashi K, Liseron-Monfils C et al (2014) Regulatory modules controlling maize inflorescence architecture. Genome Res 24:431–443

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Evers JB, Bastiaans L (2016) Quantifying the effect of crop spatial arrangement on weed suppression using functional-structural plant modelling. J Plant Res 129:339–351

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Faure S, Higgins J, Turner A, Laurie DA (2007) The FLOWERING LOCUS T-like gene family in barley (Hordeum vulgare). Genetics 176:599–609

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Faure S, Turner AS, Gruszka D, Christodoulou V, Davis SJ et al (2012) Mutation at the circadian clock gene EARLY MATURITY 8 adapts domesticated barley (Hordeum vulgare) to short growing seasons. P Natl Acad Sci USA 109:8328–8333

    Article  Google Scholar 

  • Fernández GJ, Wilson ZA (2014) A barley PHD finger transcription factor that confers male sterility by affecting tapetal development. Plant Biotechnol 12:765–777

    Article  CAS  Google Scholar 

  • Finlayson SA, Krishnareddy SR, Kebrom TH, Casal JJ (2010) Phytochrome regulation of branching in arabidopsis. Plant Physiol 152:1914–1927

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ford-Lloyd B, Engels JMM, Jackson M (2014) Genetic resources and conservation challenges under the threat of climate change. In: Jackson M, Ford-Lloyd, B., Parry, M (eds) Plant genetic resources and climate change

    Google Scholar 

  • Forster BP, Franckowiak JD, Lundqvist U, Lyon J, Pitkethly I et al (2007) The barley phytomer. Ann Bot 100:725–733

    Article  PubMed  PubMed Central  Google Scholar 

  • Francia E, Tondelli A, Rizza F, Badeck FW, Li Destri Nicosia O et al (2011) Determinants of barley grain yield in a wide range of Mediterranean environments. Field Crop Res 120:169–178

    Article  Google Scholar 

  • Franckowiack JD, Konishi T (1997) Naked caryopsis. Barley Genet Newslett 26:51–52

    Google Scholar 

  • Franckowiak JD (1997a) Smooth awn 2. Barley Genet Newslett 26:289

    Google Scholar 

  • Franckowiak JD (1997b) Smooth awn 1. Barley Genet Newslett 26:261

    Google Scholar 

  • Franckowiak JD (1997c) Rattail spike 1. Barley Genet Newsl 26:87

    Google Scholar 

  • Franckowiak JD (1997d) Multiflorus 2. Barley Genet Newsl 26:232

    Google Scholar 

  • Franckowiak JD (2005) Ovaryless 1. Barley Genet Newslett 35:191

    Google Scholar 

  • Franckowiak JD (2010a) Accordian rachis 1. Barley Genet Newsl 40:56–57

    Google Scholar 

  • Franckowiak JD (2010b) Accordian rachis 2. Barley Genet Newsl 40:65–66

    Google Scholar 

  • Franckowiak JD (2010c) Accordian rachis 3. Barley Genet Newsl 40:85–86

    Google Scholar 

  • Franckowiak JD (2010d) Small lateral spikelets 1. Barley Genet Newsl 40:78

    Google Scholar 

  • Franckowiak JD (2013) Absent lower laterals. Barley Genet Newsl 43:74–75

    Google Scholar 

  • Franckowiak JD (2014a) Long glume awn 1. Barley Genet Newslett 44:183–184

    Google Scholar 

  • Franckowiak JD (2014b) Rough awn 5. Barley Genet Newsl 44:112

    Google Scholar 

  • Franckowiak J, Lundqvist U (2010) Descriptions of barley genetic stocks for 2010. Barley Genet Newslett 40:45–177

    Google Scholar 

  • Franckowiak JD, Lundqvist U (2011a) Descriptions of barley genetic stocks for 2011. Barley Genet Newslett 40:45–177

    Google Scholar 

  • Franckowiak JD, Lundqvist U (2011b) Calcaroides-c. Barley Genet Newsl 41:195–196

    Google Scholar 

  • Franckowiak JD, Lundqvist U (2013) Barley Genet Newslett 43:64–66

    Google Scholar 

  • Franckowiak JD, Lundqvist U (2014) Barley Genet Newslett 44:93–94

    Google Scholar 

  • Franckowiak JD, Foster AE, Pederson VD, Pyler RE (1985) Registration of ‘Bowman’ barley. Crop Sci 25:883

    Article  Google Scholar 

  • Franckowiak JD, Kleinhofs A, Lundqvist U (2005) Descriptions of barley genetic stocks for 2005. Barley Genet Newslett 35:155–210

    Google Scholar 

  • Gaines RL, Bechtel DB, Pomeranz Y (1985) A microscopic study on the development of a layer in barley that causes hull-caryopsis adherence. Cereal Chem 62:35–40

    Google Scholar 

  • Gawroński P, Ariyadasa R, Himmelbach A, Poursarebani N, Kilian B et al (2014) A distorted circadian clock causes early flowering and temperature-dependent variation in spike development in the Eps-3Am mutant of einkorn wheat. Genetics 196:1253–1261

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gottwald S, Bauer P, Komatsuda T, Lundqvist U, Stein N (2009) TILLING in the two-rowed barley cultivar ‘Barke’ reveals preferred sites of functional diversity in the gene HvHox1. BMC Res Notes 2:1–14

    Article  CAS  Google Scholar 

  • Gramzow L, Theissen G (2010) A hitchhiker’s guide to the MADS world of plants. Genome Biol 11:214

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Graner A, Jahoor A, Schondelmaier J, Siedler H, Pillen K, Fischbeck G, Wenzel G, Herrmann RG (1991) Construction of an RFLP map of barley. Theor Appl Genet 83:250–256

    Google Scholar 

  • Greenwood JR, Finnegan EJ, Watanabe N, Trevaskis B, Swain SM (2017) New alleles of the wheat domestication gene Q reveal multiple roles in growth and reproductive development. Development 144:1959–1965

    Article  PubMed  CAS  Google Scholar 

  • Gregory FG, Purvis ON (1947) Abnormal flower development in barley involving sex reversal. Nature 160:221–222

    Article  Google Scholar 

  • Gurushidze M, Hensel G, Hiekel S, Schedel S, Valkov V, Kumlehn J (2014) True-breeding targeted gene knock-out in barley using designer TALE-nuclease in haploid cells. PLoS ONE 9:e92046

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gustafsson ÅA, Hagberg A, Lundqvist U, Persson G (1969) A proposed system of symbols for the collection of barley mutants at Svalöv. Hereditas 62:409–414

    Article  Google Scholar 

  • Harlan HV (1920) Daily development of kernels of Hannchen barley from flowering to maturity, at Aberdeen Idaho. J Agric Res 19:393–429

    Google Scholar 

  • Harlan JR, Zohary D (1966) Distribution of wild wheats and barley. Science 153:1074–1080

    Article  PubMed  CAS  Google Scholar 

  • Harvey BL, Reinbergs E, Somaroo BH (1968) Inheritance of female sterility in barley. Canad J Plant Science 48:417–418

    Google Scholar 

  • Hearnden PR, Eckermann PJ, McMichael GL, Hayden MJ, Eglinton JK, Chalmers KJ (2007) A genetic map of 1,000 SSR and DArT markers in a wide barley cross. Theor Appl Genet 115:383–391

    Article  PubMed  CAS  Google Scholar 

  • Hedden P (2003) The genes of the green revolution. Trends Genet 19:5–9

    Article  PubMed  CAS  Google Scholar 

  • Hein I, Pacak MB, Hrubikova K, Williamson S, Dinesen M, Soenderby IE, Sundar S, Jarmolowski A, Shirasu K, Lacomme C (2005) Virus-induced gene silencing-based functional characterization of genes associated with powdery mildew resistance in barley. Plant Physiol 138:2155–2164

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Helback H (1959) Domestication of food plants in the old world. Joint efforts by botanists and archeologists illuminate the obscure history of plant domestication. Science 130:365–372

    Article  PubMed  CAS  Google Scholar 

  • Hemming MN, Peacock WJ, Dennis ES, Trevaskis B (2008) Low-temperature and daylength cues are integrated to regulate FLOWERING LOCUS T in barley. Plant Physiol 147:355–366

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hensel G, Himmelbach A, Chen W, Douchkov DK, Kumlehn J (2011) Transgene expression systems in the Triticeae cereals. J Plant Physiol 168:30–44

    Article  PubMed  CAS  Google Scholar 

  • Hepworth SR, Zhang Y, McKim S, Li X, Haughn GW (2005) BLADE-ON-PETIOLE–dependent signaling controls leaf and floral patterning in arabidopsis. Plant Cell 17:1434–1448

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hoad SP, Brennan M, Wilson GW, Cochrane PM (2016) Hull to caryopsis adhesion and grain skinning in malting barley: identification of key growth stages in the adhesion process. J Cereal Sci 68:8–15

    Article  CAS  Google Scholar 

  • Holzberg S, Brosio P, Gross C, Pogue GP (2002) Barley stripe mosaic virus-induced gene silencing in a monocot plant. Plant J 30:315–327

    Article  PubMed  CAS  Google Scholar 

  • Houston K, Druka A, Bonar N, Macaulay M, Lundqvist U et al (2012) Analysis of the barley bract suppression gene Trd1. Theor Appl Genet 125:33–45

    Article  PubMed  CAS  Google Scholar 

  • Houston K, McKim SM, Comadran J, Bonar N, Druka I, Uzrek N, Cirillo E, Guzy-Wrobelska J, Collins NC, Halpin C, Hansson M, Dockter C, Druka A, Waugh R (2013) Variation in the interaction between alleles of HvAPETALA2 and microRNA172 determines the density of grains on the barley inflorescence. P Natl Acad Sci USA 110:16675–16680

    Article  Google Scholar 

  • Houston K, Burton RA, Sznajder B, Rafalski AJ, Dhugga KS, Mather DE, Taylor J, Steffenson BJ, Waugh R, Fincher GB (2015) A Genome-wide association study for culm cellulose content in barley reveals candidate genes co-expressed with members of the CELLULOSE SYNTHASE a gene family. PLoS ONE 10:e0130890

    Google Scholar 

  • IBSC (2012) A physical, genetic and functional sequence assembly of the barley genome. Nature 491:711–716

    Article  CAS  Google Scholar 

  • Ikeda-Kawakatsu K, Maekawa M, Izawa T, Itoh J-I, Nagato Y (2012) ABERRANT PANICLE ORGANIZATION 2/RFL, the rice ortholog of arabidopsis LEAFY, suppresses the transition from inflorescence meristem to floral meristem through interaction with APO1. Plant J 69:168–180

    Article  PubMed  CAS  Google Scholar 

  • Ivanova K (1937) A new character in barley, “third outer glume”: its inheritance and linkage with the colour of the flowering glumes. Bull Appl Bot Genet Plant Breed. (Russia) Series II 7:339–353

    Google Scholar 

  • Jeon J-S, Jang S, Lee S, Nam J, Kim C et al (2000) leafy hull sterile1 is a homeoticmutation in a rice MADS box gene affecting rice flower development. Plant Cell 12:871–884

    PubMed  PubMed Central  CAS  Google Scholar 

  • Jia Q, Zhang J, Westcott S, Zhang X-Q, Bellgard M et al (2009) GA-20 oxidase as a candidate for the semidwarf gene sdw1/denso in barley. Funct Integr Genomic 9:255–262

    Article  CAS  Google Scholar 

  • Jost M, Taketa S, Mascher M, Himmelbach A, Yuo T et al (2016) A homolog of Blade-On-Petiole 1 and 2 (BOP1/2) controls internode length and homeotic changes of the barley inflorescence. Plant Physiol 171:1113–1127

    PubMed  PubMed Central  CAS  Google Scholar 

  • Joung JK, Sander JD (2013) INNOVATION TALENs: a widely applicable technology for targeted genome editing. Nat Rev Mol Cell Biol 14:49–55

    Article  PubMed  CAS  Google Scholar 

  • Kang Y, Khan S, Ma X (2009) Climate change impacts on crop yield, crop water productivity and food security—a review. Prog Nat Sci 19:1665–1674

    Article  Google Scholar 

  • Kannangara R, Branigan C, Liu Y, Penfield T, Rao V et al (2007) The transcription factor WIN1/SHN1 regulates cutin biosynthesis in Arabidopsis thaliana. Plant Cell 19:1278–1294

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kebrom TH, Mullet JE (2015) Photosynthetic leaf area modulates tiller bud outgrowth in sorghum. Plant Cell Environ 38:1471–1478

    Article  PubMed  CAS  Google Scholar 

  • Kebrom TH, Burson BL, Finlayson SA (2006) Phytochrome B represses Teosinte Branched1 expression and induces sorghum axillary bud outgrowth in response to light signals. Plant Physiol 140:1109–1117

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kebrom TH, Chandler PM, Swain SM, King RW, Richards RA et al (2012) Inhibition of tiller bud outgrowth in the tin mutant of wheat is associated with precocious internode development. Plant Physiol 160:308–318

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kellogg EA (2001) Evolutionary history of the grasses. Plant Physiol 125:1198–1205

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kellogg EA (2015) Flowering plants. Monocots Poaceae. In: Kubitzky K (ed) The families and genera of vascular plants, p 408

    Google Scholar 

  • Kellogg E, Camara P, Rudall P, Ladd P, Malcomber S et al (2013) Early inflorescence development in the grasses (Poaceae). Front Plant Sci 4

    Google Scholar 

  • Kikuchi R, Kawahigashi H, Oshima M, Ando T, Handa H (2011) The differential expression of HvCO9, a member of the CONSTANS-like gene family, contributes to the control of flowering under short-day conditions in barley. J Exp Bot 63:773–784

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kirby EJM, Appleyard M (1987) Cereal development guide, 2nd edn. Arable Unit, National Agricultural Centre, Warwickshire, Kenilworth, England

    Google Scholar 

  • Kirby EJM, Riggs TJ (1978) Developmental consequences of two-row and six-row ear type in spring barley: 2. Shoot apex, leaf and tiller development. J Agric Sci 91:207–216

    Article  Google Scholar 

  • Kleinhofs A (2013) Ovaryless 2. Barley Genet Newslett 43:169

    Google Scholar 

  • Kleinhofs A, Franckowiak JD (2013) Multiovary 1. Barley Genet Newslett 43:59–60

    Google Scholar 

  • Kleinhofs A, Kilian A, Saghai Maroof MA, Biyashev RM, Hayes P, Chen FQ, Lapitan N, Fenwick A, Blake TK, Kanazin V, Ananiev E, Dahleen L, Kudrna D, Bollinger J, Knapp SJ, Liu B, Sorrells M, Heun M, Franckowiak JD, Hoffman D, Skadsen R, Steffenson BJ (1993) A molecular, isozyme and morphological map of the barley (Hordeum vulgare) genome. Theor Appl Genet 86:705–712

    Google Scholar 

  • Komatsu M, Chujo A, Nagato Y, Shimamoto K, Kyozuka J (2003) FRIZZY PANICLE is required to prevent the formation of axillary meristems and to establish floral meristem identity in rice spikelets. Development 130:3841–3850

    Article  PubMed  CAS  Google Scholar 

  • Komatsuda T, Maxim P, Senthil N, Mano Y (2004) High-density AFLP map of nonbrittle rachis 1 (btr1) and 2 (btr2) genes in barley (Hordeum vulgare L.). Theor Appl Genet 109:986–995

    Article  PubMed  CAS  Google Scholar 

  • Komatsuda T, Pourkheirandish M, He C, Azhaguvel P, Kanamori H et al (2007) Six-rowed barley originated from a mutation in a homeodomain-leucine zipper I-class homeobox gene. P Natl Acad Sci USA 104:1424–1429

    Article  CAS  Google Scholar 

  • Konishi T, Franckowiak JD (2002) Multiovary 3. 32:101

    Google Scholar 

  • Koppolu R, Anwar N, Sakuma S, Tagiri A, Lundqvist U et al (2013) Six-rowed spike4 (Vrs4) controls spikelet determinacy and row-type in barley. P Natl Acad Sci USA 110:13198–13203

    Article  Google Scholar 

  • Kuusk S, Sohlberg JJ, Long JA, Fridborg I, Sundberg E (2002) STY1 and STY2 promote the formation of apical tissues during arabidopsis gynoecium development. Development 129:4707–4717

    PubMed  CAS  Google Scholar 

  • Laudencia-Chingcuanco D, Hake S (2002) The indeterminate floral apex1 gene regulates meristem determinacy and identity in the maize inflorescence. Development 129:2629–2638

    Google Scholar 

  • Laurie DA, Pratchett N, Snape JW, Bezant JH (1995) RFLP mapping of five major genes and eight quantitative trait loci controlling flowering time in a winter × spring barley (Hordeum vulgare L.) cross. Genome 38:575–585

    Article  PubMed  CAS  Google Scholar 

  • Lawrenson T, Shorinola O, Stacey N, Li C, Østergaard L, Patron N, Uauy C, Harwood W (2015) Induction of targeted, heritable mutations in barley and Brassica oleracea using RNA-guided Cas9 nuclease. Genome Biol 16:258

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Leonard WH (1942) Inheritance of reduced lateral spikelet appendages in the Nudihaxtoni variety of barley. J Am Soc Agron 34:211–221

    Article  Google Scholar 

  • Leyser O (2009) The control of shoot branching: an example of plant information processing. Plant Cell Environ 32:694–703

    Article  PubMed  CAS  Google Scholar 

  • Liller CB, Neuhaus R, von Korff M, Koornneef M, van Esse W (2015) Mutations in barley row type genes have pleiotropic effects on shoot branching. PLoS ONE 10:e0140246

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liller CB, Walla A, Boer MP, Hedley P, Macaulay M et al (2017) Fine mapping of a major QTL for awn length in barley using a multiparent mapping population. Theor Appl Genet 130:269–281

    Article  PubMed  Google Scholar 

  • Liu H, Bayer M, Druka A, Russell JR, Hackett CA, Poland J, Ramsay L, Hedley PE, Waugh R (2014) An evaluation of genotyping by sequencing (GBS) to map the Breviaristatum-e (ari-e) locus in cultivated barley. BMC Genomics 15:104

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lobell DB, Gourdji SM (2012) The influence of climate change on global crop productivity. Plant Physiol 160:1686–1697

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lombardo F, Yoshida H (2015) Interpreting lemma and palea homologies: a point of view from rice floral mutants. Front Plant Sci 6

    Google Scholar 

  • Lord EM (1981) Cleistogamy: a tool for the study of floral morphogenesis, function and evolution. Bot Rev 47:421–449

    Google Scholar 

  • Lundqvist U (2009) Eighty years of Scandinavian barley mutation genetics and breeding. In: Shu QY (ed) Induced plant mutations in the genomics era food and agricultural organization of the United Nations, Rome, pp 39–43

    Google Scholar 

  • Lundqvist U, Franckowiak JD (2002) Calcaroides-e. Barley Genet Newsl 32:123

    Google Scholar 

  • Lundqvist U, Franckowiak JD (2010a) Compositum 1. Barley Genet Newsl 40:118–119

    Google Scholar 

  • Lundqvist U, Franckowiak JD (2010b) Calcaroides-d. Barley Genet Newsl 40:58–59

    Google Scholar 

  • Lundqvist U, Franckowiak JD (2011) Accordian rachis 4. Barley Genet Newsl 41:201

    Google Scholar 

  • Lundqvist U, Franckowiak JD (2014) Calcaroides-b. Barley Genet Newsl 44:197–198

    Google Scholar 

  • Lundqvist U, Lundqvist A (1988) Induced intermedium mutants in barley: origin, morphology and inheritance. Hereditas 108:13–26

    Article  Google Scholar 

  • Lundqvist U, Franckowiak JD, Konishi T (1997) New and revised descriptions of barley genes. Barley Genet Newslett 26:22–516

    Google Scholar 

  • Magallón S, Gómez-Acevedo S, Sánchez-Reyes LL, Hernández-Hernández T (2015) A metacalibrated time-tree documents the early rise of flowering plant phylogenetic diversity. New Phytol 207:437–453

    Article  PubMed  Google Scholar 

  • Malcomber ST, Preston JC, Reinheimer R, Kossuth J, Kellogg EA (2006) Developmental gene evolution and the origin of grass inflorescence diversity. Adv Bot Res 44:425–481

    Article  CAS  Google Scholar 

  • Marcel TC, Varshney RK, Barbieri M, Jafary H, de Kock MJD, Graner A, Niks RE (2007) A high-density consensus map of barley to compare the distribution of QTLs for partial resistance to Puccinia hordei and of defence gene homologues. Theor Appl Genet 114:487–500

    Article  PubMed  CAS  Google Scholar 

  • Mascher M, Muehlbauer GJ, Rokhsar DS, Chapman J, Schmutz J, Barry K, Muñoz-Amatriaín M, Close TJ, Wise RP, Schulman AH, Himmelbach A, Mayer KFX, Scholz U, Poland JA, Stein N, Waugh R (2013a) Anchoring and ordering NGS contig assemblies by population sequencing (POPSEQ). Plant J 76:718–727

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mascher M, Richmond TA, Gerhardt DJ, Himmelbach A, Clissold L, Sampath D, Ayling S, Steuernagel B, Pfeifer M, D’Ascenzo M, Akhunov ED, Hedley PE, Gonzales AM, Morrell PL, Kilian B, Blattner FR, Scholz U, Mayer KFX, Flavell AJ, Muehlbauer GJ, Waugh R, Jeddeloh JA, Stein N (2013b) Barley whole exome capture: a tool for genomic research in the genus Hordeum and beyond. Plant J 76:494–505

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mascher M, Jost M, Kuon J-E, Himmelbach A, Aßfalg A, Beier S, Scholz U, Graner A, Stein N (2014) Mapping-by-sequencing accelerates forward genetics in barley. Genome Biol 15:R78

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mascher M, Gundlach H, Himmelbach A, Beier S, Twardziok SO, Wicker T, Radchuk V, Dockter C, Hedley PE, Russell J, Bayer M, Ramsay L, Liu H, Haberer G, Zhang XQ, Zhang Q, Barrero RA, Li L, Taudien S, Groth M, Felder M, Hastie A, Šimková H, Staňková H, Vrána J, Chan S, Muñoz-Amatriaín M, Ounit R, Wanamaker S, Bolser D, Colmsee C, Schmutzer T, Aliyeva-Schnorr L, Grasso S, Tanskanen J, Chailyan A, Sampath D, Heavens D, Clissold L, Cao S, Chapman B, Dai F, Han Y, Li H, Li X, Lin C, McCooke JK, Tan C, Wang P, Wang S, Yin S, Zhou G, Poland JA, Bellgard MI, Borisjuk L, Houben A, Doležel J, Ayling S, Lonardi S, Kersey P, Langridge P, Muehlbauer GJ, Clark MD, Caccamo M, Schulman AH, Mayer KFX, Platzer M, Close TJ, Scholz U, Hansson M, Zhang G, Braumann I, Spannagl M, Li C, Waugh R, Stein N (2017) A chromosome conformation capture ordered sequence of the barley genome. Nature 544:427–433

    Google Scholar 

  • Mason MG, Ross JJ, Babst BA, Wienclaw BN, Beveridge CA (2014) Sugar demand, not auxin, is the initial regulator of apical dominance. P Natl Acad Sci USA 111:6092–6097

    Article  CAS  Google Scholar 

  • Mayer K, Martis M, Hedley P, Simková H, Liu H, Morris J, Steuernagel B, Taudien S, Roessner S, Gundlach H, Kubaláková M, Suchánková P, Murat F, Felder M, Nussbaumer T, Graner A, Salse J, Endo T, Sakai H, Tanaka T, Itoh T, Sato K, Platzer M, Matsumoto T, Scholz U, Dolezel J, Waugh R, Stein N (2011) Unlocking the barley genome by chromosomal and comparative genomics. Plant cell 23:1249–1263

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McKim SM, Stenvik G-E, Butenko MA, Kristiansen W, Cho SK et al (2008) The BLADE-ON-PETIOLE genes are essential for abscission zone formation in arabidopsis. Development 135:1537–1546

    Article  PubMed  CAS  Google Scholar 

  • McSteen P, Laudencia-Chingcuanco D, Colasanti J (2000) A floret by any other name: control of meristem identity in maize. Trends Plant Sci 5:61–66

    Google Scholar 

  • Mizuno N, Nitta M, Sato K, Nasuda S (2012) A wheat homologue of PHYTOCLOCK 1 is a candidate gene conferring the early heading phenotype to einkorn wheat. Genes Genet Sys 87:357–367

    Article  CAS  Google Scholar 

  • Muller KJ, Romano N, Gerstner O, Garcia-Marotot F, Pozzi C et al (1995) The barley Hooded mutation caused by a duplication in a homeobox gene intron. Nature 374:727–730

    Article  PubMed  CAS  Google Scholar 

  • Nair SK, Wang N, Turuspekov Y, Pourkheirandish M, Sinsuwongwat S, Chen G, Sameri M, Tagiri A, Honda I, Watanabe Y, Kanamori H, Wicker T, Stein N, Nagamura Y, Matsumoto T, Komatsuda T (2010) Cleistogamous flowering in barley arises from the suppression of microRNA-guided HvAP2 mRNA cleavage. Proc Natl Acad Sci USA 107:490–495

    Google Scholar 

  • Nečas J (1963) Inheritance of development of lateral florets in spikelets of barley spike. Biol Plant 5:89–99

    Article  Google Scholar 

  • Osnato M, Stile MR, Wang Y, Meynard D, Curiale S et al (2010) Cross talk between the KNOX and ethylene pathways is mediated by intron-binding transcription factors in barley. Plant Physiol 154:1616–1632

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pankin A, Campoli C, Dong X, Kilian B, Sharma R et al (2014) Mapping-by-sequencing identifies HvPHYTOCHROME C as a candidate gene for the early maturity 5 locus modulating the circadian clock and photoperiodic flowering in barley. Genetics 198:383–396

    Article  PubMed  PubMed Central  Google Scholar 

  • Potokina E, Druka A, Luo ZW, Wise R, Waugh R, Kearsey M (2008) Gene expression quantitative trait locus analysis of 16,000 barley genes reveals a complex pattern of genome-wide transcriptional regulation. Plant J 53:90–101

    Article  PubMed  CAS  Google Scholar 

  • Pourkheirandish M, Hensel G, Kilian B, Senthil N, Chen G, Sameri M, Azhaguvel P, Sakuma S, Dhanagond S, Sharma R, Mascher M, Himmelbach A, Gottwald S, Nair SK, Tagiri A, Yukuhiro F, Nagamura Y, Kanamori H, Matsumoto T, Willcox G, Middleton CP, Wicker T, Walther A, Waugh R, Fincher GB, Stein N, Kumlehn J, Sato K, Komatsuda T (2015) Evolution of the grain dispersal system in barley. Cell 162:527–539

    Google Scholar 

  • Poursarebani N, Seidensticker T, Koppolu R, Trautewig C, Gawroński P et al (2015) The genetic basis of composite spike form in barley and ‘miracle-wheat’. Genetics 201:155–165

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Prusinkiewicz P, Erasmus Y, Lane B, Harder LD, Coen E (2007) Evolution and development of inflorescence architectures. Science 316:1452–1456

    Google Scholar 

  • Pozzi C, Faccioli P, Terzi V, Stanca AM, Cerioli S et al (2000) Genetics of mutations affecting the development of a barley floral bract. Genetics 154:1335–1346

    PubMed  PubMed Central  CAS  Google Scholar 

  • Prasad K, Sriram P, Kumar SC, Kushalappa K, Vijayraghavan U (2001) Ectopic expression of rice OsMADS1 reveals a role in specifying the lemma and palea, grass floral organs analogous to sepals. Dev Genes Evol 211:281–290

    Article  PubMed  CAS  Google Scholar 

  • Prasad K, Parameswaran S, Vijayraghavan U (2005) OsMADS1, a rice MADS-box factor, controls differentiation of specific cell types in the lemma and palea and is an early-acting regulator of inner floral organs. Plant J 43:915–928

    Article  PubMed  CAS  Google Scholar 

  • Ramsay L, Comadran J, Druka A, Marshall DF, Thomas WTB, Macaulay M, MacKenzie K, Simpson C, Fuller J, Bonar N, Hayes PM, Lundqvist U, Franckowiak JD, Close TJ, Muehlbauer GJ, Waugh R (2011) INTERMEDIUM-C, a modifier of lateral spikelet fertility in barley, is an ortholog of the maize domestication gene TEOSINTE BRANCHED 1. Nat Genet 43:169–172

    Article  PubMed  CAS  Google Scholar 

  • Rao NN, Prasad K, Kumar PR, Vijayraghavan U (2008) Distinct regulatory role for RFL, the rice LFY homolog, in determining flowering time and plant architecture. P Natl Acad Sci USA 105:3646–3651

    Article  Google Scholar 

  • Rebetzke GJ, Bonnett DG, Reynolds MP (2016) Awns reduce grain number to increase grain size and harvestable yield in irrigated and rainfed spring wheat. J Exp Bot 67:2573–2586

    Google Scholar 

  • Remizowa MV, Rudall PJ, Choob VV, Sokoloff DD (2013) Racemose inflorescences of monocots: structural and morphogenetic interaction at the flower/inflorescence level. Ann Bot 112:1553–1566

    Article  PubMed  Google Scholar 

  • Richardson A, Rebocho AB, Coen E (2016) Ectopic KNOX expression affects plant development by altering tissue cell polarity and identity. Plant Cell 28:2079–2096

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Roig C, Pozzi C, Santi L, Müller J, Wang Y et al (2004) Genetics of barley hooded suppression. Genetics 167:439–448

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rossini L, Okagaki R, Druka A, Muehlbauer GJ (2014) Shoot and inflorescence architecture. In: Kumlehn J, Stein N (eds) Biotechnological approaches to barley improvement. Springer, Berlin, pp 55–80

    Google Scholar 

  • Rossini L, Vecchietti A, Nicoloso L, Stein N, Franzago S et al (2006) Candidate genes for barley mutants involved in plant architecture: an in silico approach. Theor Appl Genet 112:1073–1085

    Article  PubMed  CAS  Google Scholar 

  • Rostoks N, Mudie S, Cardle L, Russell J, Ramsay L, Booth A, Svensson JT, Wanamaker SI, Walia H, Rodriguez EM, Hedley PE, Liu H, Morris J, Close TJ, Marshall DF, Waugh R (2005) Genome-wide SNP discovery and linkage analysis in barley based on genes responsive to abiotic stress. Mol Genet Genomics 274:515–527

    Article  PubMed  CAS  Google Scholar 

  • Russell J, Mascher M, Dawson IK, Kyriakidis S, Calixto C, Freund F, Bayer M, Milne I, Marshall-Griffiths T, Heinen S, Hofstad A, Sharma R, Himmelbach A, Knauft M, van Zonneveld M, Brown JWS, Schmid K, Kilian B, Muehlbauer GJ, Stein N, Waugh R (2016) Exome sequencing of geographically diverse barley landraces and wild relatives gives insights into environmental adaptation. Nat Genet 48:1024–1030

    Article  PubMed  CAS  Google Scholar 

  • Sakuma S, Salomon B, Komatsuda T (2011) The domestication syndrome genes responsible for the major changes in plant form in the Triticeae crops. Plant Cell Physiol 52:738–749

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sakuma S, Lundqvist U, Kakei Y, Thirulogachandar V, Suzuki T et al (2017) Extreme suppression of lateral floret development by a single amino acid change in the VRS1 transcription factor. Plant Physiol 175:1720–1731

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sánchez-Martín J, Steuernagel B, Ghosh S, Herren G, Hurni S, Adamski N, Vrána J, Kubaláková M, Krattinger SG, Wicker T, Doležel J, Keller B, Wulff BBH (2016) Rapid gene isolation in barley and wheat by mutant chromosome sequencing. Genome Biol 17:221

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sang T (2009) Genes and mutations underlying domestication transitions in grasses. Plant Physiol 149:63–70

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Santi L, Wang Y, Stile MR, Berendzen K, Wanke D et al (2003) The GA octodinucleotide repeat binding factor BBR participates in the transcriptional regulation of the homeobox gene Bkn3. Plant J 34:813–826

    Article  PubMed  CAS  Google Scholar 

  • Sawers RJH, Sheehan MJ, Brutnell TP (2005) Cereal phytochromes: targets of selection, targets for manipulation? Trends Plant Sci 10:138–143

    Article  CAS  Google Scholar 

  • Schaller CW, Qualset CO (1975) Isogenic analysis of productivity barley: interaction of genes affecting awn length and leaf-spotting. Crop Sci 15:378–382

    Article  Google Scholar 

  • Scholz F, Lehmann C (1961) Die gaterslebener mutanten der saatgerste in beziehung zur formenmannigfaltigkeit der art Hordeum vulgare L.s.l III. Die Kulturpflanze 9:230–272

    Article  Google Scholar 

  • Scotland RW, Wortley AH (2003) How many species of seed plants are there? Taxon 52:101–104

    Article  Google Scholar 

  • Smeekens S, Ma J, Hanson J, Rolland F (2010) Sugar signals and molecular networks controlling plant growth. Curr Opin Plant Biol 13:273–278

    Article  CAS  Google Scholar 

  • Sohlberg JJ, Myrenås M, Kuusk S, Lagercrantz U, Kowalczyk M et al (2006) STY1 regulates auxin homeostasis and affects apical–basal patterning of the arabidopsis gynoecium. Plant J 47:112–123

    Article  PubMed  CAS  Google Scholar 

  • Sreenivasulu N, Schnurbusch T (2012) A genetic playground for enhancing grain number in cereals. Trends Plant Sci 17:91–101

    Google Scholar 

  • Stebbins GL, Yagil E (1966) The morphogenetic effects of the hooded gene in barley. I. The course of development in hooded and awned genotypes. Genetics 54:727–741

    PubMed  PubMed Central  CAS  Google Scholar 

  • Stein N, Prasad M, Scholz U, Thiel T, Zhang H, Wolf M, Kota R, Varshney R, Perovic D, Grosse I, Graner A (2007) A 1,000-loci transcript map of the barley genome: new anchoring points for integrative grass genomics. Theor Appl Genet 114:823–839

    Article  PubMed  CAS  Google Scholar 

  • Stenvik GE, Butenko MA, Urbanowicz BR, Rose JK, and Aalen RB (2006) Overexpression of INFLORESCENCE DEFICIENT IN ABSCISSION activates cell separation in vestigial abscission zones in Arabidopsis. Plant Cell 18:1467–1476

    Google Scholar 

  • Sun Q, Zhou D-X (2008) Rice jmjC domain-containing gene JMJ706 encodes H3K9 demethylase required for floral organ development. P Natl Acad Sci USA 105:13679–13684

    Article  Google Scholar 

  • Takahashi R (1955) The origin and evolution of cultivated barley. Academic 7

    Google Scholar 

  • Takahashi R (1987) Genetic features of East Asian barleys. In: Yasuda S, Konishi T (eds) Barley genetics V. Proceedings of fifth international barley genetics symposium, Okayama, 1986. Sanyo Press Co., Okayama, pp 7–20

    Google Scholar 

  • Takahashi R, Yasuda S (1971) Genetics of earliness and growth habit in barley. In: Nilan R (ed) Barley genetics II. Proceedings of the second international barley genetics symposium. Washington State University Press, Pullman, WA, pp 388–408

    Google Scholar 

  • Takahashi R, Yamamoto J, Yasuda S, Itano Y (1953) Inheritance and linkage studies in barley. Ber Ohara Inst Landwirtschaftliche Forsch 10:29–53

    Google Scholar 

  • Takeda K, Saito W (1988) Inheritance of the percentage of missing lateral florets in ‘irregurale’ barley. Jap J Breed 38:72–80

    Article  Google Scholar 

  • Taketa S, Amano S, Tsujino Y, Sato T, Saisho D et al (2008) Barley grain with adhering hulls is controlled by an ERF family transcription factor gene regulating a lipid biosynthesis pathway. P Natl Acad Sci USA 105:4062–4067

    Article  Google Scholar 

  • Taketa S, Yuo T, Sakurai Y, Miyake S, Ichii M (2011) Molecular mapping of the short awn 2 (lks2) and dense spike 1 (dsp1) genes on barley chromosome 7H. Breed Sci 61:80–85

    Article  Google Scholar 

  • Talamè V, Bovina R, Sanguineti MC, Tuberosa R, Lundqvist U, Salvi S (2008) TILLMore, a resource for the discovery of chemically induced mutants in barley. Plant Biotechnol J 6:477–485

    Article  PubMed  CAS  Google Scholar 

  • Tanto Hadado T, Rau D, Bitocchi E, Papa R (2010) Adaptation and diversity along an altitudinal gradient in Ethiopian barley (Hordeum vulgare L.) landraces revealed by molecular analysis. BMC Plant Biol 10:121

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Teichmann T, Muhr M (2015) Shaping plant architecture. Front Plant Sci 6

    Google Scholar 

  • Thirulogachandar V, Alqudah AM, Koppolu R, Rutten T, Graner A et al (2017) Leaf primordium size specifies leaf width and vein number among row-type classes in barley. Plant J 91:601–612

    Article  PubMed  CAS  Google Scholar 

  • Tondelli A, Francia E, Visioni A, Comadran J, Mastrangelo AM et al (2014) QTLs for barley yield adaptation to Mediterranean environments in the ‘Nure’ × ‘Tremois’ biparental population. Euphytica 197:73–86

    Article  Google Scholar 

  • Trevaskis B, Tadege M, Hemming MN, Peacock WJ, Dennis ES et al (2007) Short vegetative phase-Like MADS-box genes inhibit floral meristem identity in barley. Plant Physiol 143:225–235

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Turner A, Beales J, Faure S, Dunford RP, Laurie DA (2005) The Pseudo-response regulator Ppd-H1 provides adaptation to photoperiod in barley. Science 310:1031–1034

    Article  PubMed  CAS  Google Scholar 

  • van Esse GW, Walla A, Finke A, Koornneef M, Pecinka A et al (2017) Six-rowed spike3 (VRS3) is a histone demethylase that controls lateral spikelet development in barley. Plant Physiol 174:2397–2408

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Varshney R, Marcel T, Ramsay L, Russell J, Röder M, Stein N, Waugh R, Langridge P, Niks RE, Graner A (2007) A high density barley microsatellite consensus map with 775 SSR loci. Theor Appl Genet 114:1091–1103

    Google Scholar 

  • Vegetti AA, Anton AM (1995) Some evolution trends in the inflorescence of Poaceae. Flora 190:225–228

    Google Scholar 

  • von Bothmer R, Jacobsen N, Baden C, Jorgensen RB, Linde-Laursen I (1995) Systematic and ecogeographical studies on crop genepools; an ecogeographical study of the genus Hordeum. International plant genetic resources institute (IPGRI), Rome, Italy

    Google Scholar 

  • von Korff M, Campoli C (2014) Genetic control of reproductive development in temperate cereals. In: Fornara F (ed) Advances in botanical research. Academic Press, London, UK, pp 131–152

    Google Scholar 

  • von Korff M, Grando S, Del Greco A, This D, Baum M et al (2008) Quantitative trait loci associated with adaptation to Mediterranean dryland conditions in barley. Theor Appl Genet 117:653–669

    Article  Google Scholar 

  • von Ubisch G (1915) Analyse eines falles von bastardatavismus und faktoren-koppelung bei gerste. Zeitschrift für Induktive Abstammungs- und Vererbungslehre 14:226–237

    Google Scholar 

  • Ward SP, Leyser O (2004) Shoot branching. Curr Opin Plant Biol 7:73–78

    Google Scholar 

  • Wellmer F, Riechmann JL (2010) Gene networks controlling the initiation of flower development. Trends Genet 26:519–527

    Article  PubMed  CAS  Google Scholar 

  • Wendt T, Holm PB, Starker CG, Christian M, Voytas DF, Brinch-Pedersen H, Holme IB (2013) TAL effector nucleases induce mutations at a pre-selected location in the genome of primary barley transformants. Plant Mol Biol 83:279–285

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wendt T, Holme I, Dockter C, Preuß A, Thomas W et al (2016) HvDep1 is a positive regulator of culm elongation and grain size in barley and impacts yield in an environment-dependent manner. PLoS ONE 11:e0168924

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wenzl P, Li HB, Carling J, Zhou MX, Raman H, Paul E, Hearnden P, Maier C, Xia L, Caig V, Ovesna J, Cakir M, Poulsen D, Wang JP, Raman R, Smith KP, Muehlbauer GJ, Chalmers KJ, Kleinhofs A, Huttner E, Kilian A (2006) A high-density consensus map of barley linking DArT markers to SSR, RFLP and STS loci and agricultural traits. BMC Genomics 7:206

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Whipple CJ (2017) Grass inflorescence architecture and evolution: the origin of novel signaling centers. New Phytol 216:367–372

    Google Scholar 

  • Whipple CJ, Zanis MJ, Kellogg EA, Schmidt RJ (2007) Conservation of B class gene expression in the second whorl of a basal grass and outgroups links the origin of lodicules and petals. P Natl Acad Sci USA 104:1081–1086

    Article  CAS  Google Scholar 

  • Whipple CJ, Hall DH, DeBlasio S, Taguchi-Shiobara F, Schmidt RJ et al (2010) A conserved mechanism of bract suppression in the grass family. Plant Cell 22:565–578

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Whipple CJ, Kebrom TH, Weber AL, Yang F, Hall D et al (2011) grassy tillers1 promotes apical dominance in maize and responds to shade signals in the grasses. P Natl Acad Sci USA 108:E506–E512

    Article  Google Scholar 

  • Xu Y, Jia Q, Zhou G, Zhang X-Q, Angessa T, Broughton S, Yan G, Chang W, Li C (2017) Characterisation of the sdw1 semi-dwarf gene in barley. BMC Plant Biol 17:11

    Google Scholar 

  • Yagil E, Stebbins GL (1969) The morphogenetic effects of the hooded gene in barley ii. Cytological and environmental factors affecting gene expression. Genetics 62:307–319

    PubMed  PubMed Central  CAS  Google Scholar 

  • Yan L, Loukoianov A, Tranquilli G, Helguera M, Fahima T et al (2003) Positional cloning of the wheat vernalization gene VRN1. P Natl Acad Sci USA 100:6263–6268

    Article  CAS  Google Scholar 

  • Yan L, Loukoianov A, Blechl A, Tranquilli G, Ramakrishna W et al (2004) The Wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science 303:1640–1644

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yan L, Fu D, Li C, Blechl A, Tranquilli G et al (2006) The wheat and barley vernalization gene VRN3 is an orthologue of FT. P Natl Acad Sci USA 103:19581–19586

    Article  CAS  Google Scholar 

  • Yoshida H, Nagato Y (2011) Flower development in rice. J Exp Bot 62:4719–4730

    Article  PubMed  CAS  Google Scholar 

  • Youssef HM, Koppolu R, Schnurbusch T (2012) Re-sequencing of vrs1 and int-c loci shows that labile barleys (Hordeum vulgare convar. labile) have a six-rowed genetic background. Genet Resour Crop Ev 59:1319–1328

    Article  Google Scholar 

  • Youssef HM, Eggert K, Koppolu R, Alqudah AM, Poursarebani N, Fazeli A, Sakuma S, Tagiri A, Rutten T, Govind G, Lundqvist U, Graner A, Komatsuda T, Sreenivasulu N, Schnurbusch T (2017a) VRS2 regulates hormone-mediated inflorescence patterning in barley. Nat Genet 49:157–161

    Article  PubMed  CAS  Google Scholar 

  • Youssef HM, Mascher M, Ayoub MA, Stein N, Kilian B et al (2017b) Natural diversity of inflorescence architecture traces cryptic domestication genes in barley (Hordeum vulgare L.). Genet Resour Crop Ev 64:843–853

    Article  CAS  Google Scholar 

  • Yuo T, Yamashita Y, Kanamori H, Matsumoto T, Lundqvist U et al (2012) A SHORT INTERNODES (SHI) family transcription factor gene regulates awn elongation and pistil morphology in barley. J Exp Bot 63:5223–5232

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zakhrabekova S, Gough SP, Braumann I, Müller AH, Lundqvist J et al (2012) Induced mutations in circadian clock regulator Mat-a facilitated short-season adaptation and range extension in cultivated barley. P Natl Acad Sci USA 109:4326–4331

    Article  Google Scholar 

  • Zhang Y, Zhang F, Li XH, Baller JA, Qi YP, Starker CG, Bogdanove AJ, Voytas DF (2013) Transcription activator-like effector nucleases enable efficient plant genome engineering. Plant Physiol 161:20–27

    Article  PubMed  CAS  Google Scholar 

  • Zhou Y, Lu D, Li C, Luo J, Zhu B-F, Zhu J, Shangguan Y, Wang Z, Sang T, Zhou B, Han B (2012) Genetic control of seed shattering in rice by the APETALA2 transcription factor SHATTERING ABORTION1. Plant Cell 24:1034–1048

    Google Scholar 

  • Zhu Q-H, Hoque MS, Dennis ES, Upadhyaya NM (2003) Ds tagging of BRANCHED FLORETLESS 1 (BFL1) that mediates the transition from spikelet to floret meristem in rice (Oryza sativa L.). BMC Plant Biol 3:6

    Article  PubMed  PubMed Central  Google Scholar 

  • Zohary D (1963) Proceedings of the first international barley genetics symposium, Wageningen: Barley genetics I. Pudoc Centre for Agricultural Publications and Documentations, Wageningen, The Netherlands, pp 27–31

    Google Scholar 

  • Zohary D, Hopf M (2000) Domestication of plants in the old world: the origin and spread of cultivated plants in West Asia, Europe and the Nile Valley. Oxford University Press, Oxford

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah M. McKim .

Editor information

Editors and Affiliations

Appendix

Appendix

Genetic and Genomic Resources for Gene Cloning and Functional Analysis

A robust genetic map is the starting point for a good physical map, which in turn is crucial for identification of physical contigs harboring genes of interest in positional cloning studies. Over the past two decades, many barley genetic linkage maps became available based on different marker systems, including RFLPs (Graner et al. 1991; Kleinhofs et al. 1993), SSRs (Varshney et al. 2007), DArTs (Wenzl et al. 2006), ESTs (Potokina et al. 2008; Stein et al. 2007), SNPs (Close et al. 2009; Rostoks et al. 2005), and a combination of different marker systems (Hearnden et al. 2007; Marcel et al. 2007). A major advance was the development of the barley genome zippers by positioning the gene-based barley 454 sequence reads in synteny with the genes of rice, Brachypodium, and Sorghum (Mayer et al. 2011). These syntenic 454 reads were positioned in between the gene-based SNP markers reported in the consensus map developed by Close et al. (2009). A dense genetic map-based on Morex × Barke RIL population (3973 SNP markers) was developed by Comadran et al. (2012) and (IBSC 2012). Mascher et al. (2013a) further refined the Morex × Barke RIL map by introducing a strategy based on sequencing progenies of Morex × Barke of population (POPSEQ) that allowed de novo production of a genetically anchored linear assembly (an ultra dense genetic map with 4.3 million SNPs). Ariyadasa et al. (2014) developed a genome-wide physical map of barley by map-based sequencing (4.9 Gb representing 96% of the physical length). A draft genome sequence of barley was made available by the International Barley Sequencing Consortium (IBSC 2012). Further A high-quality barley reference genome assembly was developed by chromosome conformation capture mapping (HiC) to derive the linear order of sequences across the pericentromeric regions. Such resources greatly facilitate high-resolution trait mapping, gene isolation, and comparative genome or transcriptome studies. The availability of gold standard reference genome, physical maps and marker systems paved the way for several NGS-based fast-forward genetic analysis and gene cloning strategies in barley such as mapping-by-sequencing (Liu et al. 2014; Mascher et al. 2014) exome capture (Mascher et al. 2013b; Russell et al. 2016), and MutChromSeq (Sánchez-Martín et al. 2016). Gene cloning was also accelerated due to robust genetic analyses such as Genome-Wide Association scans (GWAS) benefitting from variation across germplasm (Comadran et al. 2012; Houston et al. 2015; Houston et al. 2013; Ramsay et al. 2011; Youssef et al. 2017).

Gene expression patterns can often reveal insight about possible gene function and links to mutant phenotypes. A high-quality RNA seq data set from 16 different tissues (including six inflorescence tissues) is available for all genes in barley and the expression data can be visualized through the BARLEX database (Colmsee et al. 2015). Apart from this, developmental stage (from SAM until AP) and position specific (LSM, CSM, and IM) reference transcriptome data has been generated from Bowman (Schnurbusch et al., Unpublished), which will provide the expression dynamics of inflorescence developmental genes across time and space.

Once the gene underlying a phenotype is identified, the further functional analysis is essential to substantiate the gene function. Towards this measure, barley has a rich collection of chemical and ionizing ration induced mutants defective in their inflorescence development. All of these mutants are genetically characterized (Lundqvist 2009; Scholz and Lehmann 1961) and have been systematically maintained in geneticist and breeder collections at the National Small Grain Collection, Aberdeen, ID (http://www.ars.usda.gov/Main/docs.htm?docid=2922), IPK Genebank and the Nordic Genetic Resource Center, Alnarp, Sweden (https://www.nordgen.org/bgs/index.php). Several of these mutants have been backcrossed to (BW001 to BW979) a near-isogenic background in the genotype Bowman (Franckowiak et al. 1985) making their functional evaluation less cumbersome. Druka et al. (2011) performed SNP genotyping of all Bowman backcrossed mutants, which delimited the genomic introgression responsible for the mutant phenotype. The historical mutant resources together with SNP introgression data would be a wonderful starting point for the functional studies and positional isolation of responsible gene/s in these mutants.

Most of the historical barley developmental mutants identified in the past have more than one mutant allele by which the underlying gene function can be validated. However, for genes being isolated by conventional bi-parental genetic analyses or GWAS, and for those mutants lacking enough number of mutant alleles, it is necessary to validate identified gene candidates using reverse genetic approaches such as TILLING (Targeting Induced Local Lesions IN Genomes) or transgenics. As of today, four different TILLING populations are available for barley. These include (i) TILLMore, a sodium azide induced six-rowed TILLING population from Morex (Talamè et al. 2008). (ii) Two-rowed EMS (Ethyl Methyl Sulfonate) induced Barke TILLING population (Gottwald et al. 2009). (iii) Two-rowed EMS-induced Optic TILLING population (Caldwell et al. 2004) The other unpublished resources include EMS-induced TILLING lines from two-rowed cultivar Haruna Nijo (Sato et al. unpublished). These reverse genetic tools shall enable functional evaluation of genes in mutants of interest.

Testing genes of interest by transgenics is a common functional genetics approach (Hensel et al. 2011). Several transgenic approaches were established for barley by which a preferred gene can be complemented, downregulated, knocked-out or over-expressed. Complementation is a straight forward approach by which a mutated gene can be complemented by the functional wild-type form of the gene. The quantitative effect of a gene can be analyzed through approaches like RNA interference (RNAi), Virus-Induced Gene Silencing (VIGS) (Hein et al. 2005; Holzberg et al. 2002), which function through homology-dependant post-transcriptional gene silencing. However, these approaches suffer from potential off-target effects (gene family members). This problem can be circumvented through a recent technology called Transcriptional Activator-Like Effector Nucleases (TALENs), which allows sequence specific in planta gene targeting with typically no off-target effects in the genetic background of the host genome (Boch et al. 2009; Joung and Sander 2013; Zhang et al. 2013). This technology has already been proven successful in barley (Gurushidze et al. 2014; Wendt et al. 2013). Recently, the RNA-guided Cas9 system (CRISPR/Cas) has been proven successful to knockout genes in barley (Lawrenson et al. 2015). The comprehensive set of available genetic and genomic resources discussed will be useful to isolate and characterize genetic determinants underlying various developmental processes in barley.

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

McKim, S.M., Koppolu, R., Schnurbusch, T. (2018). Barley Inflorescence Architecture. In: Stein, N., Muehlbauer, G. (eds) The Barley Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-319-92528-8_12

Download citation

Publish with us

Policies and ethics