Skip to main content

Genetics of HCM and Role of Genetic Testing

  • Chapter
  • First Online:
Hypertrophic Cardiomyopathy

Abstract

Since 1989, major advances have been made in our understanding of the genetic basis of HCM. Our genetic advances have led to a complete redefinition of HCM as a complex medical genetic disorder of the sarcomere. To date, over 1300 mutations in at least 8 disease genes have been identified in patients with HCM. This genetic information has had its greatest impact in the setting of predictive testing in at-risk family members. The genetic testing process in HCM requires a multidisciplinary approach, which includes the cardiologist, genetic counselor, geneticists, and patient support groups. Careful phenotyping of HCM patients, comprehensive pre- and post- test genetic counseling, careful interpretation of the genetic reports, and systematic application of the genetic result in the setting of the HCM family are all key components of care. The latest genetic technologies, including whole genome sequencing, will likely translate to a greater understanding of the genetic and molecular underpinnings of HCM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Teare D. Asymmetrical hypertrophy of the heart in young adults. Br Heart J. 1958;20:1–8.

    Article  CAS  Google Scholar 

  2. Seidman J, Seidman C. The genetic basis for cardiomyopathy: from mutation identification to mechanistic paradigms. Cell. 2001;104:557–67.

    Article  CAS  Google Scholar 

  3. Alfares AA, Kelly MA, McDermott G, Funke BH, Lebo MS, Baxter SB, Shen J, McLaughlin HM, Clark EH, Babb LJ, Cox SW, DePalma SR, Ho CY, Seidman JG, Seidman CE, Rehm HL. Results of clinical genetic testing of 2,912 probands with hypertrophic cardiomyopathy: expanded panels offer limited additional sensitivity. Genet Med. 2015;17:880.

    Article  Google Scholar 

  4. Maron BJ, Maron MS, Semsarian C. Genetics of hypertrophic cardiomyopathy after 20 years: clinical perspectives. J Am Coll Cardiol. 2012;60:705–15.

    Article  Google Scholar 

  5. Ingles J, Sarina T, Yeates L, Hunt L, Macciocca I, McCormack L, Winship I, McGaughran J, Atherton J, Semsarian C. Clinical predictors of genetic testing outcomes in hypertrophic cardiomyopathy. Genet Med. 2013;15:972.

    Article  Google Scholar 

  6. Exome Aggregation Consortium, Lek M, Karczewski K, Minikel E, Samocha K, Banks E, Fennell T, O'Donnell-Luria A, Ware J, Hill A, Cummings B, Tukiainen T, Birnbaum D, Kosmicki J, Duncan L, Estrada K, Zhao F, Zou J, Pierce-Hoffman E, Cooper D, DePristo M, Do R, Flannick J, Fromer M, Gauthier L, Goldstein J, Gupta N, Howrigan D, Kiezun A, Kurki M, Moonshine AL, Natarajan P, Orozco L, Peloso G, Poplin R, Rivas M, Ruano-Rubio V, Ruderfer D, Shakir K, Stenson P, Stevens C, Thomas B, Tiao G, Tusie-Luna M, Weisburd B, Won H-H, Yu D, Altshuler D, Ardissino D, Boehnke M, Danesh J, Roberto E, Florez J, Gabriel S, Getz G, Hultman C, Kathiresan S, Laakso M, McCarroll S, McCarthy M, McGovern D, McPherson R, Neale B, Palotie A, Purcell S, Saleheen D, Scharf J, Sklar P, Patrick S, Tuomilehto J, Watkins H, Wilson J, Daly M, MacArthur D. Analysis of protein-coding genetic variation in 60,706 humans. Nature. 2016;536(7616):285–91.

    Article  Google Scholar 

  7. Ross SB, Bagnall RD, Ingles J, Van Tintelen JP, Semsarian C. Burden of recurrent and ancestral mutations in families with hypertrophic cardiomyopathy. Circ Cardiovasc Genet. 2017;10:e001671.

    Article  CAS  Google Scholar 

  8. Watkins H, Rosenzweig A, Hwang DS, Levi T, McKenna W, Seidman CE, Seidman JG. Characteristics and prognostic implications of myosin missense mutations in familial hypertrophic cardiomyopathy. N Engl J Med. 1992;326:1108–14.

    Article  CAS  Google Scholar 

  9. Niimura H, Bachinski LL, Sangwatanaroj S, Watkins H, Chudley AE, McKenna W, Kristinsson A, Roberts R, Sole M, Maron BJ, Seidman JG, Seidman CE. Mutations in the gene for cardiac myosin-binding protein C and late-onset familial hypertrophic cardiomyopathy. N Engl J Med. 1998;338:1248–57.

    Article  CAS  Google Scholar 

  10. Semsarian C, Yu B, Ryce C, Lawrence C, Washington H, Trent RJ. Sudden cardiac death in familial hypertrophic cardiomyopathy: are "benign" mutations really benign? Pathology. 1997;29:305–8.

    Article  CAS  Google Scholar 

  11. Ackerman MJ, Priori SG, Willems S, Berul C, Brugada R, Calkins H, Camm AJ, Ellinor PT, Gollob M, Hamilton R, Hershberger RE, Judge DP, Le Marec H, McKenna WJ, Schulze-Bahr E, Semsarian C, Towbin JA, Watkins H, Wilde A, Wolpert C, Zipes DP. HRS/EHRA expert consensus statement on the state of genetic testing for the channelopathies and cardiomyopathies this document was developed as a partnership between the Heart Rhythm Society (HRS) and the European Heart Rhythm Association (EHRA). Heart Rhythm. 2011;8:1308–39.

    Article  Google Scholar 

  12. Ingles J, Semsarian C. The value of cardiac genetic testing. Trends Cardiovasc Med. 2014;24:217–24.

    Article  Google Scholar 

  13. Ingles J, Yeates L, Semsarian C. The emerging role of the cardiac genetic counselor. Heart Rhythm. 2011;8:1958–62.

    Article  Google Scholar 

  14. Burns C, Bagnall RD, Lam L, Semsarian C, Ingles J. Multiple gene variants in hypertrophic cardiomyopathy in the era of next-generation sequencing. Circ Cardiovasc Genet. 2017;10:e001666.

    Article  CAS  Google Scholar 

  15. Burns C, Yeates L, Spinks C, Semsarian C, Ingles J. Attitudes, knowledge and consequences of uncertain genetic findings in hypertrophic cardiomyopathy. Eur J Hum Genet. 2017;25:809–15.

    Article  CAS  Google Scholar 

  16. Furqan A, Arscott P, Girolami F, Cirino AL, Michels M, Day S, Olivotto I, Ho CY, Ashley E, Green E, Consortium S, Caleshu C. Care in specialized centers and data sharing increase agreement in hypertrophic cardiomyopathy genetic test interpretation. Circ Cardiovasc Genetics. 2017;10(5)

    Google Scholar 

  17. Rehm HL. A new era in the interpretation of human genomic variation. Genet Med. 2017;19:1092.

    Article  Google Scholar 

  18. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, Grody WW, Hegde M, Lyon E, Spector E, Voelkerding K, Rehm HL, Committee ALQA. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17:405–24.

    Article  Google Scholar 

  19. Das KJ, Ingles J, Bagnall RD, Semsarian C. Determining pathogenicity of genetic variants in hypertrophic cardiomyopathy: importance of periodic reassessment. Genet Med. 2014;16(4):286–93.

    Article  Google Scholar 

  20. Ingles J, McGaughran J, Scuffham PA, Atherton J, Semsarian C. A cost-effectiveness model of genetic testing for the evaluation of families with hypertrophic cardiomyopathy. Heart. 2012;98(8):625–30.

    Article  Google Scholar 

  21. Ingles J, Burns C, Barratt A, Semsarian C. Application of genetic testing in hypertrophic cardiomyopathy for preclinical disease detection. Circ Cardiovasc Genet. 2015;8:852–9.

    Article  Google Scholar 

  22. Maron BJ, Semsarian C. Emergence of gene mutation carriers and the expanding disease spectrum of hypertrophic cardiomyopathy. Eur Heart J. 2010;31:1551–3.

    Article  CAS  Google Scholar 

  23. Maron BJ, Yeates L, Semsarian C. Clinical challenges of genotype positive (+)-phenotype negative (−) family members in hypertrophic cardiomyopathy. Am J Cardiol. 2011;107:604–8.

    Article  Google Scholar 

  24. Gray B, Ingles J, Semsarian C. Natural history of genotype positive-phenotype negative patients with hypertrophic cardiomyopathy. Int J Cardiol. 2011;152:258–9.

    Article  Google Scholar 

  25. Christiaans I, Birnie E, Bonsel GJ, Mannens MM, Michels M, Majoor-Krakauer D, Dooijes D, van Tintelen JP, van den Berg MP, Volders PG, Arens YH, van den Wijngaard A, Atsma DE, Helderman-van den Enden AT, Houweling AC, de Boer K, van der Smagt JJ, Hauer RN, Marcelis CL, Timmermans J, van Langen IM, Wilde AA. Manifest disease, risk factors for sudden cardiac death, and cardiac events in a large nationwide cohort of predictively tested hypertrophic cardiomyopathy mutation carriers: determining the best cardiological screening strategy. Eur Heart J. 2011;32:1161–70.

    Article  Google Scholar 

  26. Olivotto I, Ashley EA. INHERIT (INHibition of the renin angiotensin system in hypertrophic cardiomyopathy and the Effect on hypertrophy-a Randomised Intervention Trial with losartan). Glob Cardiol Sci Pract. 2015;2015:7.

    Article  Google Scholar 

  27. Ho CY, Lakdawala NK, Cirino AL, Lipshultz SE, Sparks E, Abbasi SA, Kwong RY, Antman EM, Semsarian C, Gonzalez A, Lopez B, Diez J, Orav EJ, Colan SD, Seidman CE. Diltiazem treatment for pre-clinical hypertrophic cardiomyopathy sarcomere mutation carriers: a pilot randomized trial to modify disease expression. JACC Heart Fail. 2015;3:180–8.

    Article  Google Scholar 

  28. Kelly M, Semsarian C. Multiple mutations in genetic cardiovascular disease: a marker of disease severity? Circ Cardiovasc Genet. 2009;2:182–90.

    Article  CAS  Google Scholar 

  29. Ingles J, Doolan A, Chiu C, Seidman J, Seidman C, Semsarian C. Compound and double mutations in patients with hypertrophic cardiomyopathy: implications for genetic testing and counselling. J Med Genet. 2005;42:e59.

    Article  CAS  Google Scholar 

  30. Richard P, Charron P, Carrier L, Ledeuil C, Cheav T, Pichereau C, Benaiche A, Isnard R, Dubourg O, Burban M, Gueffet JP, Millaire A, Desnos M, Schwartz K, Hainque B, Komajda M. Hypertrophic cardiomyopathy: distribution of disease genes, spectrum of mutations, and implications for a molecular diagnosis strategy. Circulation. 2003;107:2227–32.

    Article  Google Scholar 

  31. Fourey D, Care M, Siminovitch KA, Weissler-Snir A, Hindieh W, Chan RH, Gollob MH, Rakowski H, Adler A. Prevalence and clinical implication of double mutations in hypertrophic cardiomyopathy: revisiting the gene-dose effect. Circ Cardiovasc Genet. 2017;10:e001685.

    Article  CAS  Google Scholar 

  32. Ingles J, Semsarian C. Sudden cardiac death in the young: a clinical genetic approach. Intern Med J. 2007;37:32–7.

    Article  Google Scholar 

  33. Ingles J, Lind JM, Phongsavan P, Semsarian C. Psychosocial impact of specialized cardiac genetic clinics for hypertrophic cardiomyopathy. Genet Med. 2008;10:117–20.

    Article  Google Scholar 

  34. Ma H, Marti-Gutierrez N, Park SW, Wu J, Lee Y, Suzuki K, Koski A, Ji D, Hayama T, Ahmed R, Darby H, Van Dyken C, Li Y, Kang E, Park AR, Kim D, Kim ST, Gong J, Gu Y, Xu X, Battaglia D, Krieg SA, Lee DM, Wu DH, Wolf DP, Heitner SB, Belmonte JCI, Amato P, Kim JS, Kaul S, Mitalipov S. Correction of a pathogenic gene mutation in human embryos. Nature. 2017;548:413–9.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Semsarian .

Editor information

Editors and Affiliations

Questions

Questions

  1. 1.

    The most common form of inheritance in HCM is:

    1. A.

      Autosomal dominant

    2. B.

      Autosomal recessive

    3. C.

      X-linked

    4. D.

      Maternal

    5. E.

      None of the above

  • Answer: A

  • HCM can be inherited in all the listed modes, but the majority (at least 70%) is inherited as an autosomal dominant trait. The clinical importance of this relates to the fact that in autosomal dominant inheritance, 50% of the offspring of affected HCM individuals will also be affected, hence the importance of clinical and genetic screening of first-degree relatives.

  1. 2.

    The most common genes implicated in HCM relate to:

    1. A.

      Calcium regulation

    2. B.

      Desmosome function

    3. C.

      Ion channel function

    4. D.

      Sarcomere function

    5. E.

      Mitochondrial energy utilization

  • Answer: D

  • All the established genes in which mutations cause HCM encode sarcomere or sarcomere-related proteins. The two most common genes are MYH7 and MYBPC3. Mutations in HCM sarcomere genes can influence calcium regulation, desmosome function, ion channel function, and energy utilization as part of the molecular pathogenesis of HCM.

  1. 3.

    Genetic testing in HCM can be useful for:

    1. A.

      Diagnosis

    2. B.

      Screening family members

    3. C.

      Diagnosing HCM “phenocopies”

    4. D.

      Reproductive decisions

    5. E.

      All of the above

  • Answer: E

  • Genetic testing has many benefits in HCM. While the main role relates to cascade or predictive testing in screening family members (option B), it can also assist in clarifying diagnosis (e.g., HCM vs athlete’s heart), diagnosing HCM phenocopies such as Fabry or Danon disease, and can help in decisions regarding family planning.

  1. 4.

    Which one of the following statements is true regarding a variant of uncertain significance (VUS):

    1. A.

      VUS can be used clinically in genetic testing of family members.

    2. B.

      VUS is the cause of HCM.

    3. C.

      The clinical significance and pathogenicity of the VUS remains unknown.

    4. D.

      VUS findings are rare.

    5. E.

      None of the above.

  • Answer: C

  • VUS are commonly seen with genetic testing in HCM and represent findings of variants where the clinical and pathogenic significance remains unclear. Therefore VUS findings should not be used for genetic screening in the family since its pathogenic, disease-causing role is unknown.

  1. 5.

    Genetic testing in HCM can be useful in the setting of reproductive decisions in the following way:

    1. A.

      Preimplantation genetic diagnosis

    2. B.

      Prenatal testing

    3. C.

      Genetic testing at birth

    4. D.

      Genetic testing in childhood

    5. E.

      All of the above

  • Answer: E

  • Genetic testing in HCM can have clinical utility from conception through to old age. A pathogenic genetic result for HCM in a proband can be used to test embryos preimplantation by IVF to ensure a baby who does not carry the mutation. A pathogenic genetic result for HCM in a proband can also be used prenatally (by chorionic villous sampling) to see whether the fetus carries the HCM mutation. In life, genetic testing can be performed at birth, during childhood, or at any stage during adulthood. Importantly, pretest and posttest cardiac genetic counseling is essential in all instances where genetic testing in HCM is being considered.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Semsarian, C., Ingles, J. (2019). Genetics of HCM and Role of Genetic Testing. In: Naidu, S. (eds) Hypertrophic Cardiomyopathy. Springer, Cham. https://doi.org/10.1007/978-3-319-92423-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92423-6_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92422-9

  • Online ISBN: 978-3-319-92423-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics