Skip to main content

Epicardial and Microvascular Ischemia: Implications, Diagnosis, and Management

  • Chapter
  • First Online:
Hypertrophic Cardiomyopathy
  • 1362 Accesses

Abstract

Angina is a common symptom in hypertrophic cardiomyopathy and occurs in approximately 20% of patients. More than 50–75% of patients with HCM have myocardial ischemia on noninvasive testing. Of those patients with angina, approximately 25% have significant epicardial coronary artery disease. It is important to diagnose concomitant epicardial CAD in these patients as it is a predictor of increased mortality in HCM. The majority of HCM patients with myocardial ischemia do not have epicardial CAD, however. The proposed mechanisms of ischemia in the absence of epicardial CAD include increased oxygen demand, microvascular medial hypertrophy and dysfunction, and perturbations of cardiac-coronary coupling with reduction in systolic myocardial blood flow due to microvascular compression from a hypertrophic and hyperdynamic left ventricle and reduced diastolic myocardial blood flow due to blunting of diastolic suction secondary to impaired diastolic relaxation. Repetitive ischemic insults leads to myocardial injury and subsequent myocardial fibrosis. Myocardial ischemia in HCM patients is associated with increased mortality, ventricular tachycardia, left ventricular remodeling and dysfunction, and congestive heart failure. It is unknown whether the treatment of myocardial ischemia in HCM will influence outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Maron MS, Olivotto I, Maron BJ, Prasad SK, Cecchi F, et al. The case for myocardial ischemia in hypertrophic cardiomyopathy. J Am Coll Cardiol. 2009;54:866–75.

    Article  Google Scholar 

  2. Gori F, Basso C, Thiene G. Myocardial infarction in a patient with hypertrophic Cardiomyopathy. N Engl J Med. 2000;342(8):593.

    Article  CAS  Google Scholar 

  3. Maron BJ, Epstein SE, Roberts WC. Hypertrophic cardiomyopathy ad transmural myocardial infarction without significant atherosclerosis of the extramural coronary arteries. Am J Cardiol. 1979;43:1086–102.

    Article  CAS  Google Scholar 

  4. Basso C, Thiene G, Corrado D, et al. Hypertrophic cardiomyopathy and sudden death in the young: pathologic evidence of myocardial ischemia. Hum Pathol. 2000;31:988–98.

    Article  CAS  Google Scholar 

  5. Sato Y, Taniguchi R, Nagai K, et al. Measurements of cardiac troponin T in patients with hypertrophic cardiomyopathy. Heart. 2003;9:659–60.

    Article  Google Scholar 

  6. Gommans F, Bakker J, Cramer E, et al. Elevated high-sensitivity cardiac troponin ins associated with hypertrophy and fibrosis assessed with CMR in patients with hypertrophic cardiomyopathy. J Cardovasc Magn Reson. 2013;15(Suppl 1):144.

    Article  Google Scholar 

  7. Kubo T, Kitaoka H, Yamanaka S, et al. Significance of high-sensitivity cardiac troponin T in hypertrophic cardiomyopathy. J Am Coll Cardiol. 2013;62:1252–9.

    Article  CAS  Google Scholar 

  8. O’Gara PT, Bonow RO, Maron BJ, et al. Myocardial perfusion abnormalities in patients with hypertrophic cardiomyopathy: assessment with thallium-201 emission computed tomography. Circulation. 1987;76(6):1214–23.

    Article  Google Scholar 

  9. Cannon RO III, Dilsizian V, O’Gara PT, et al. Myocardial metabolic, hemodynamic, and electrocardiographic significance of reversible Thallium-201 abnormalities in hypertrophic cardiomyopathy. Circulation. 1991;83:1660–7.

    Article  Google Scholar 

  10. Von Dohlen TW, Prisant LM, Frank MJ. Significance of positive or negative Thallium-21 scintigraphy in hypertrophic cardiomyopathy. Am J Cardiol. 1989;64:498–503.

    Article  Google Scholar 

  11. Dilsizlian V, Panza JA, Bonow RO. Myocardial perfusion imaging in hypertrophic cardiomyopathy. J Am Coll Cardiol Img. 2010;110:1078–80.

    Article  Google Scholar 

  12. Petersen SE, Jerosch-Herold M, Hudsmith LE, et al. Evidence for microvascular dysfunction in hypertrophic cardiomyopathy. Circulation. 2007;115:2418–25.

    Article  Google Scholar 

  13. Ismail TF, Hsu L-Y, Greve AM, et al. Coronary microvascular ischemia in hypertrophic cardiomyopathy – a pixel-wise quantitative cardiovascular magnetic resonance perfusion study. J Cardiovasc Magn Reson. 2014;16:49.

    Article  Google Scholar 

  14. Villa ADM, Sammut E, Zarinabad N, et al. Microvascular ischemia in hypertrophic cardiomyopathy: new insights from high-resolution combined quantification of perfusion and late gadolinium enhancement. J Cardiovasc Magn Reson. 2016;18:4.

    Article  Google Scholar 

  15. Elliott PM, Rosano GMC, Gill JS, et al. Changes in coronary sinus pH during dipyridamole stress in patients with hypertrophic cardiomyopathy. Heart. 1996;75:179–83.

    Article  CAS  Google Scholar 

  16. Cannon RO III, Rosing DR, Maron BJ, et al. Myocardial ischemia in patients with hypertrophic cardiomyopathy: contribution of inadequate vasodilator reserve and elevated left ventricular filling pressures. Circulation. 1985;71(2):234–43.

    Article  Google Scholar 

  17. Lanza GA, Creg F. Primary coronary microvascular dysfunction and clinical presentation pathophysiology, and management. Circulation. 2010;121:2317–25.

    Article  Google Scholar 

  18. Camici PG, Creg F. Coronary microvascular dysfunction. N Engl J Med. 2007;356:830–40.

    Article  CAS  Google Scholar 

  19. Yang EH, Yeo TC, Higano ST, et al. Coronary hemodynamics in patients with symptomatic hypertrophic cardiomyopathy. Am J Cardiol. 2004;94:685–7.

    Article  Google Scholar 

  20. Soliman OII, Knaapen P, Gelejnse ML, et al. Assessment of intravascular and extravascular mechanisms of myocardial perfusion abnormalities in obstructive hypertrophic cardiomyopathy by myocardial contrast echocardiography. Heart. 2007;93:1204–12.

    Article  Google Scholar 

  21. Olivotto I, Griolami F, Scigra R, et al. Microvascular function is selectively impaired in patients with hypertrophic cardiomyopathy and sarcomere myofilament gene mutations. J Am Coll Cardiol. 2011;50:839–48.

    Article  Google Scholar 

  22. Maron BJ, Wolfson JK, Epstein SE, Roberts WC. Intramural (“small vessel”) coronary artery disease in hypertrophic cardiomyopathy. J Am Coll Cardiol. 1986;8:545–57.

    Article  CAS  Google Scholar 

  23. Varnava AM, Elliott PM, Sharma S, et al. Hypertrophic cardiomyopathy: the interrelation of disarray, fibrosis, and small vessel disease. Heart. 2000;84:476–82.

    Article  CAS  Google Scholar 

  24. Davies JE, Whinnett ZI, Francis DP, et al. Evidence of a dominant backward-propagating “suction” wave responsible for diastolic filling in humans, attenuated by left ventricular hypertrophy. Circulation. 2006;113:1768–78.

    Article  Google Scholar 

  25. Davies JE, Sen S, Broyd C, et al. Arterial pulse wave dynamics after percutaneous aortic valve replacement: fall in coronary diastolic suction with increasing heart rate as a basis for angina symptoms in aortic stenosis. Circulation. 2011;124:1565–78.

    Article  Google Scholar 

  26. Raphael CE, Cooper R, Parker KH, et al. Mechanisms of myocardial ischemia in hypertrophic cardiomyopathy. Insights from wave intensity analysis and magnetic resonance. J Am Coll Cardiol. 2016;8:1651–60.

    Article  Google Scholar 

  27. Sorajja P, Ommen SR, Nishimura RA, et al. Adverse prognosis of patients with hypertrophic cardiomyopathy who have epicardial coronary artery disease. Circulation. 2003;108:2342–8.

    Article  Google Scholar 

  28. Möhlenkamp S, Hort W, Ge J, et al. Update on myocardial bridging. Circulation. 2002;106:2616–22.

    Article  Google Scholar 

  29. Costello FM, Stouffer GA. Hemodynamics of myocardial abridging. Catheter Cardiovasc Interv. 2008;71:590–3.

    Article  Google Scholar 

  30. Bourass MG, Butnaru A, Lespérance J, Tardif J-C. Symptomatic myocardial abridges: overview of ischemic mechanisms and current diagnostic and treatment strategies. J Am Coll Cardiol. 2003;41:351–9.

    Article  Google Scholar 

  31. Yetman AT, McCrindle BW, MacDonald C, et al. Myocardial bridging in children with hypertrophic cardiomyopathy – a risk factor for sudden death. N Engl J Med. 1998;339:1201–9.

    Article  CAS  Google Scholar 

  32. Sorajja P, Ommen SR, Nishimuia RD, et al. Myocardial bridging in adult patients with hypertrophic cardiomyopathy. J Am Coll Cardiol. 2003;42:889–96.

    Article  Google Scholar 

  33. Dilsizian V, Bonow RO, Epstein SE, et al. Myocardial ischemia detected by thallium scintigraphy is frequently related to cardiac arrest and syncope in young patients with hypertrophic cardiomyopathy. J Am Coll Cardiol. 1993;22:796–804.

    Article  CAS  Google Scholar 

  34. Lazzeroni E, Picano E, Morozzi L, et al. Dipyridamole-induced ischemia as a prognostic marker of future adverse cardiac events in adult patients with hypertrophic cardiomyopathy. Circulation. 1997;96:4268–72.

    Article  CAS  Google Scholar 

  35. Yamada M, Elliott PM, Kaski JC, et al. Dipyridamole stress thallium −201 perfusion abnormalities in patients with hypertrophic cardiomyopathy. Eur Heart J. 1998;19:500–7.

    Article  CAS  Google Scholar 

  36. Cecchi F, Olivotto I, Gistgri R, et al. Coronary microvascular dysfunction and prognosis in hypertrophic cardiomyopathy. N Engl J Med. 2003;349:1027–35.

    Article  CAS  Google Scholar 

  37. Olivotto I, Cecchi F, Gistri R, et al. Relevance of coronary microvascular flow impairment to long-term remodeling and systolic dysfunction in hypertrophic cardiomyopathy. J Am Coll Cardiol. 2006;47:1043–8.

    Article  Google Scholar 

  38. Maron BJ, Spirito P. Implications of left ventricular remodeling in hypertrophic cardiomyopathy. Am J Cardiol. 1998;81:1339–44.

    Article  CAS  Google Scholar 

  39. Maron MS, Appelbaum E, Harrigan CJ, et al. Clinical profile and significance of delayed enhancement in hypertrophic cardiomyopathy. Circ Heart Fail. 2008;1:184–91.

    Article  Google Scholar 

  40. Seiler C, Jenni R, Vassalli G, et al. Left ventricular chamber dilation in hypertrophic cardiomyopathy: related variables and prognosis in patients with medical and surgical therapy. Br Heart J. 1995;74:508–16.

    Article  CAS  Google Scholar 

  41. Harris KM, Spirito P, Maron MS, et al. Prevalence, clinical profile, and significance of left ventricular remodeling in the end-stage phase of hypertrophic cardiomyopathy. Circulation. 2006;114:216–25.

    Article  Google Scholar 

  42. Maron MS, Finley JJ, Bos JM, et al. Prevalence, clinical significance, and natural history of left ventricular apical aneurysms in hypertrophic cardiomyopathy. Circulation. 2008;118:1541–9.

    Article  Google Scholar 

  43. Biagini E, Coccolo F, Ferlito M, et al. Dilated-hypokinetic evolution of hypertrophic cardiomyopathy. Prevalence, incidence, risk factors, and prognostic implications in pediatric and adult patients. J Am Coll Cardiol. 2005;456:1543–50.

    Article  Google Scholar 

  44. Green JJ, Berges JS, Kramer CM, et al. Prognostic value of late Gadolinium enhancement in hypertrophic cardiomyopathy. J Am Coll Cardiol Imaging. 2012;5:370–7.

    Article  Google Scholar 

  45. Ismail TF, Jabbour A, Gulati A, et al. Role of late gadolinium enhancement cardiovascular resonance in the risk stratification of hypertrophic cardiomyopathy. Heart. 2014;100:1851–8.

    Article  Google Scholar 

  46. Spoladore R, Maron MS, D’Amato R, et al. Pharmalogical treatment options for hypertrophic cardiomyopathy: high time for evidence. Eur Heart J. 2012;33:1724–33.

    Article  CAS  Google Scholar 

  47. Udelson JE, Bonow RO, O’Gara PT. Verapamil prevents silent myocardial perfusion abnormalities during exercise in asymptomatic patients with hypertrophic cardiomyopathy. Circulation. 1989;79:1052–60.

    Article  CAS  Google Scholar 

  48. Gistri R, Lecchi F, Choudhury L, et al. Effect of verapamil on absolute myocardial blood flow in hypertrophic cardiomyopathy. Am J Cardiol. 1994;74:363–8.

    Article  CAS  Google Scholar 

  49. Sugihara H, Taniguchi Y, Ito K, et al. Effects of diltiazem on myocardial perfusion abnormalities during exercise in patients with hypertrophic cardiomyopathy. Ann Nucl Med. 1998;12:349–54.

    Article  CAS  Google Scholar 

  50. Pollick C. Muscular subaortic stenosis: hemodynamic and clinical improvement after disopyramide. N Engl J Med. 1982;307:997–9.

    Article  CAS  Google Scholar 

  51. Cannon RO, McIntosh CL, Schenke WH, et al. Effect of surgical reduction of left ventricular outflow obstruction on hemodynamics, coronary flow, and myocardial metabolism in hypertrophic cardiomyopathy. Circulation. 1989;79:766–75.

    Article  Google Scholar 

  52. Cannon RO III, Dilsizian V, O’Gara PT, et al. Impact of surgical relief of outflow obstruction on thallium perfusion abnormalities in hypertrophic cardiomyopathy. Circulation. 1992;85:1039–45.

    Article  Google Scholar 

  53. Pedone C, Biagini E, Galema TW, et al. Myocardial perfusion after percutaneous transluminal septal myocardial ablation as assessed by myocardial contrast echocardiography in patients with hypertrophic obstructive cardiomyopathy. J Am Soc Echocardiogr. 2006;19:982–6.

    Article  Google Scholar 

  54. Jaber WA, Yang EH, Nishimura RA, et al. Immediate improvement in coronary flow reserve after alcohol septal ablation in patients with hypertrophic obstructive cardiomyopathy. Heart. 2009;95:564–9.

    Article  CAS  Google Scholar 

  55. Soliman OII, Geleijnse ML, Michels M, et al. Effect of successful alcohol septal ablation on microvascular function in patients with obstructive hypertrophic cardiomyopathy. Am J Cardiol. 2008;101:1321–7.

    Article  Google Scholar 

  56. Elliott PM, Kaski JC, Prasad K, et al. Chest pain during daily life in patients with hypertrophic cardiomyopathy: an ambulatory electrocardiographic study. Eur Heart J. 1996;17:1056–64.

    Article  CAS  Google Scholar 

  57. Choudhury L, Rigolin VH, Bonow RO, et al. Integrated imaging in hypertrophic cardiomyopathy. Am J Cardiol. 2017;119:328–39.

    Article  Google Scholar 

  58. Morise AP. Exercise testing in nonatherosclerotic heart disease. Hypertrophic cardiomyopathy, valvular heart disease, and arrhythmias. Circulation. 2001;123:216–25.

    Article  Google Scholar 

  59. Gersh BJ, Maron BJ, Ro B, et al. ACCF/AHA guideline for diagnosis and treatment of hypertrophic cardiomyopathy: a report of the American College of Cardiology Foundation/American Heart Association task force on practice guidelines. Circulation. 2011;2011(124):e783–831.

    Google Scholar 

  60. Elliott PM, Anastaskis A, Borger MA, et al. 2014 ESC Guidelines on diagnosis and management of hypertrophic cardiomyopathy: the task force for the diagnosis and management of hypertrophic cardiomyopathy of European Society of Cardiology (ESC). Eur Heart J. 2014;35:2733–79.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George S. Hanzel .

Editor information

Editors and Affiliations

Questions

Questions

  1. 1.

    Which of the following is incorrect?

    1. A.

      20% of HCM patients have angina.

    2. B.

      90% of HCM patients have ischemia.

    3. C.

      50–75% of HCM patients have chronic troponin elevations.

    4. D.

      Repetitive ischemia induces myocardial fibrosis.

  • Answer: B. 50–75% of HCM patient have ischemia.

  1. 2.

    Which of the following are proposed mechanisms for microvascular ischemia in HCM?

    1. A.

      Supply-demand mismatch

    2. B.

      Microvascular hypertrophy and dysfunction

    3. C.

      Perturbations of cardiac-coronary coupling

    4. D.

      All of the above

  • Answer: D. All are proposed causes of myocardial ischemia in HCM.

  1. 3.

    According to wave intensity analysis (i.e., cardiac-coronary coupling) which of the following are important determinants of ischemia in HCM?

    1. A.

      Systolic reversal of flow due to microvascular compression.

    2. B.

      Decreased driving pressure due to LVOT obstruction.

    3. C.

      Blunted diastolic sucking wave due to impaired ventricular relaxation

    4. D.

      All of the above

  • Answer: D. All of the above mechanisms are thought to impact myocardial blood flow in HCM.

  1. 4.

    Which of the following is false regarding myocardial blood flow (indexed per gram of myocardial tissue) in HCM?

    1. A.

      Resting myocardial blood flow is normal.

    2. B.

      Resting myocardial blood flow is decreased.

    3. C.

      Hyperemic myocardial blood flow is normal.

    4. D.

      Hyperemic myocardial blood flow is deceased.

  • Answer: C. Coronary resistance is low in HCM with reduction in hyperemic coronary flow reserve. Coronary vasodilation at rest is necessary to meet metabolic demands of the hypertrophied ventricle.

  1. 5.

    Microvascular ischemia is associated with all the following but:

    1. A.

      Mortality

    2. B.

      Syncope

    3. C.

      Atrial fibrillation

    4. D.

      Congestive heart failure

  • Answer: C. Microvascular ischemia has been associated with increased mortality, ventricular arrhythmias, syncope, adverse ventricular remodeling, and CHF but not atrial fibrillation at this time.

  1. 6.

    Which of the following is the best imaging modality to detect epicardial CAD in the HCM patient?

    1. A.

      Angiography (invasive or CTA)

    2. B.

      Myocardial perfusion imaging

    3. C.

      Positron-emission tomography

    4. D.

      Exercise echocardiogram

  • Answer: A. Perfusion imaging studies and exercise echo suffer from poor specificity in detecting epicardial CAD in HCM patients. Therefore angiography is the preferred imaging modality. The choice of invasive angiography versus CTA is dictated by clinical suspicion for epicardial disease.

  1. 7.

    Which of the following is true regarding epicardial CAD?

    1. A.

      Epicardial CAD is seen in 25% of HCM patients.

    2. B.

      HCM contributes to premature atherosclerosis.

    3. C.

      Advanced age is protective in HCM patients with CAD.

    4. D.

      Epicardial CAD increases mortality to a greater extent in HCM vs non-HCM population.

  • Answer: D. In HCM patients with epicardial CAD the annual mortality rate is 6.4%, far higher than the typical CAD population.

  1. 8.

    Which of the following is associated with increased mortality in the adult HCM population?

    1. A.

      Microvascular ischemia

    2. B.

      Epicardial CAD

    3. C.

      Myocardial bridging

    4. D.

      A and B

    5. E.

      A, B, and C

  • Answer: D. Although myocardial bridging may cause angina is some patients with HCM, it has not been shown to influence mortality or other outcomes.

  1. 9.

    Which of the following if true:

    1. A.

      All HCM patients should undergo screening for microvascular ischemia.

    2. B.

      Medical therapy reduces myocardial ischemia in HCM.

    3. C.

      Medical therapy improves outcomes in HCM patients with microvascular ischemia.

    4. D.

      Septal reduction therapy should be considered the treatment of choice in patients with microvascular ischemia since it has been show to improve outcomes.

  • Answer: B. Medical therapy has been shown to reduce perfusion abnormalities in HCM. It is unknown whether medical or septal reduction therapy influences outcomes in HCM patients with microvascular ischemia. Since it is unknown whether treatment of silent microvascular ischemia improves outcomes, routine testing to detect ischemia is not recommended.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hanzel, G.S. (2019). Epicardial and Microvascular Ischemia: Implications, Diagnosis, and Management. In: Naidu, S. (eds) Hypertrophic Cardiomyopathy. Springer, Cham. https://doi.org/10.1007/978-3-319-92423-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92423-6_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92422-9

  • Online ISBN: 978-3-319-92423-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics