Skip to main content

Epiphenomena in Hypertrophic Cardiomyopathy: Acquired von Willebrand Syndrome

  • Chapter
  • First Online:
Hypertrophic Cardiomyopathy
  • 1329 Accesses

Abstract

Acquired von Willebrand syndrome due to cardiac disorders was initially described in aortic stenosis and congenital heart defects. However, case series over several years have reported gastrointestinal bleeding due to angiodysplasia in hypertrophic cardiomyopathy (HCM). The association of gradient to severity of von Willebrand factor dysfunction in aortic stenosis was first defined in 2003 and in hypertrophic cardiomyopathy in 2008. Subsequent studies have further confirmed that platelet function analyzer 100 (PFA) and quantitative VWF multimers are strongly associated with gradients, that they function as biomarkers in demonstrating treatment responses, that bleeding is as prevalent as in aortic stenosis, and that septal reduction therapy can be curative of transfusion-dependent gastrointestinal hemorrhage from angiodysplasia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Tiede A, Priesack J, Sersitzke S, Bohlmann K, Oortwijn B, Lenting P, Eisert R, Ganser A, Budde U. Diagnostic workup of patients with acquired von Willebrand syndrome: a retrospective single-center cohort study. J Throm Haem. 2008;6:569–76.

    Article  CAS  Google Scholar 

  2. Studt JD, Budde U, Schneppenheim R, Eisert R, et al. Quantification and facilitated comparison of von Willebrand factor multimer patterns by densitometry. Am J Clin Pathol. 2001;116(4):567–74.

    Article  CAS  Google Scholar 

  3. Lippok S, Obser T, Muller JP, Stierle VK, Benoit M, Budde U, Schneppenheim R, Radler JO. Exponential size distribution of von Willebrand factor. Biphysical J. 2013;105:1208–16.

    Article  CAS  Google Scholar 

  4. Lenting P, Casari C, Christophe OD, Denis CV. Von Willebrand factor: the old, the new, and the unknown. J Throm Haemaostasis. 2012;10:2428–37.

    Article  CAS  Google Scholar 

  5. Starke RD, Ferraro F, Paschalaki KE, Dryden NH, McKinnon TAJ, Sutton RE, Payne EM, Haskard DO, Hughes AD, Cutler DF, Laffan MA, Randi AM. Endothelial von Willebrand factor regulates angiogenesis. Blood. 2011;117:1071–80.

    Article  CAS  Google Scholar 

  6. Franchini M, Mannucci PM. Von Willebrand disease-associated angiodysplasia: a few answers, still many questions. Brit J Haematol. 2013;16:177–82.

    Article  Google Scholar 

  7. Van Belle E, Rauch A, Vincentelli A, Jeanpierre E Legendre P, Juthier F, Hurt C, Banfi C, Rousse N, Godier A, Carod C, Elkalioubie A, Corseaux D, Dupont A, Zawakzki C, Delhaye C, Mouquet F, Schurtz G, Deplanque D, Chinetti G, Staels B, Goudemand J, Jude B, Lenting P, Susen S. Von Willebrand factor as a biological sensor of blood flow to monitor percutaneous aortic valve interventions. Circ Res. 2015;116:1193–201.

    Article  Google Scholar 

  8. Blackshear JL, Kusumoto H, Safford RE, Wysokinska E, Thomas CS, Waldo OA, Stark ME, Shapiro BP, Ung S, Moussa I, Agnew RC, Landolfo K, Chen D. Usefulness of Von Willebrand factor activity indexes to predict therapeutic response in hypertrophic cardiomyopathy. Am J Cardiol. 2016;117:436–42.

    Article  CAS  Google Scholar 

  9. Blackshear JL, McRee CW, Safford RE, Pollak PM, Stark ME, Thomas CS, Rivera CE, Wysokinska EM, Chen D. von Willebrand factor abnormalities and Heyde syndrome in dysfunctional heart valve prostheses. JAMA Cardiol. 2016;1(2):198–204.

    Article  Google Scholar 

  10. Van Belle E, Rauch A, Vincent F, et al. Von Willebrand factor multimers during transcatheter aortic valve replacement. N Engl J Med. 2016;375:335–44.

    Article  Google Scholar 

  11. Blackshear J, Wysokinska E, Safford R, Thomas C, Stark M, Shapiro B, Ung S, Johns G, Chen D. Indexes of von Willebrand factor as biomarkers of aortic stenosis severity (from the Biomarkers of Aortic Stenosis Severity [BASS] Study). J Cardiol. 2013;111:374–81.

    Article  CAS  Google Scholar 

  12. Loscalzo J. From clinical observation to mechanism – Heyde’s syndrome. N Engl J Med. 2012;367:1954–6.

    Article  CAS  Google Scholar 

  13. Kimmel DJ, Paster SB, Burstein J, Stovring J, Cochran PT. Cardiac disease and recurrent gastrointestinal bleeding: angiodysplasia with accompanying hypertrophic subaortic stenosis. Rocky Mt Med J. 1977;74:316–9.

    CAS  PubMed  Google Scholar 

  14. Bonneau A, Firouz-Abadi M, Cognault JP, Couradeau B, Dumas M. Angiodysplasia of the ileum and cardiomyopathyAnn Cardiol Angeiol (Paris). 1984;33:389–94.

    CAS  Google Scholar 

  15. Alam M, Lewis JW Jr. Cessation of gastrointestinal bleeding from angiodysplasia after surgery for idiopathic hypertrophic subaortic stenosis. Am Heart J. 1991;121:608–10.

    Article  CAS  Google Scholar 

  16. Schwartz J, Rozenfeld V, Habot B. Cessation of recurrent bleeding from gastrointestinal angiodysplasia, after beta blocker treatment in a patient with hypertrophic subaortic stenosis--a case history. Angiology. 1992;43:244–8.

    Article  CAS  Google Scholar 

  17. Fujita H, Tomiyama J, Chuganji Y, Momoi M, Tanaka T. Diffuse angiodysplasia of the upper gastrointestinal tract in a patient with hypertrophic obstructive cardiomyopathy. Intern Med. 2000;39:385–8.

    Article  CAS  Google Scholar 

  18. Riis Hansen P, Hassager C. Septal alcohol ablation and Heyde’s syndrome revisited. J Intern Med. 2003;253:490–1.

    Article  CAS  Google Scholar 

  19. Marti L, Anton R, Almela P, Benages A. Angiodislasia intestinal asociada a estenosis subaortica hipertrofica: una variante del sindrome de Heyde? Med Clin (Barc). 2006;125:635–6.

    Article  Google Scholar 

  20. Shimizu M, Masai H, Miwa Y. Occult gastrointestinal bleeding due to acquired von Willebrand syndrome in a patient with hypertrophic obstructive cardiomyopathy. Intern Med. 2007;46:481–5.

    Article  Google Scholar 

  21. Blackshear JL, Wysokinska EM, Safford RE, Thomas CS, Shapiro BP, Ung S, Stark ME, Parikh P, Johns GS, Chen D. Shear stress-associated acquired von Willebrand syndrome in patients with mitral regurgitation. J Thromb Haemostasis. 2014;12:1966–74.

    Article  CAS  Google Scholar 

  22. Guha A, Eshelbrenner CL, Richards DM, Monsour HP Jr. Gastrointestinal bleeding after continuous flow left ventricular device implantation: review of pathophysiology and management. Methodist Debakey Cardiovasc J. 2105;11:24–7.

    Article  Google Scholar 

  23. Vincentelli A, Susen S, Le Tourneau T, Six I, Fabre O, Juthier F, Bauters A, Decoene C, Goudemand J, Prat A, Jude B. Acquired von Willebrand syndrome in aortic stenosis. N Engl J Med. 2003;349:343–9.

    Article  Google Scholar 

  24. Yoshida K, Tobe S, Kawata M, Yamaguchi M. Acquired and reversible von Willebrand disease with high shear stress aortic valve stenosis. Ann Thorac Surg. 2006;81:490–4.

    Article  Google Scholar 

  25. Sucker C, Feindtz P, Zotzi RB, Stockschlaeder M, Scharf RE. Functional von Willebrand factor assays are not predictive for the absence of highest-molecular weight von Willebrand factor multimers in patients with aortic-valve stenosis. Thromb Haemost. 2005;94:465–6.

    CAS  PubMed  Google Scholar 

  26. Casonato A, Sponga S, Pontara E. Von Willebrand factor abnormalities in aortic valve stenosis: pathophysiology and impact on bleeding. Throm Haemost. 2011;106:58–66.

    Article  CAS  Google Scholar 

  27. Solomon C, Budde U, Schneppenheim S. Acquired type 2A von Willebrand syndrome caused by aortic valve disease corrects during valve surgery. Brit J Anaesthesia. 2011;106:494–500.

    Article  CAS  Google Scholar 

  28. Le Tourneau TL, Susen S, Caron C, Millaire S, Ennezat PV, Lamblin N, de Groote P, Van Belle E, Marechaux BJ, Polge A-S, Vincentelli A, Mouquet F, Ennezat P-V, Lamblin N, de Groote P, Van Belle E, Deklunder G, Goudemand J, Bauters C, Jude B Functional impairment of von Willebrand factor in hypertrophic cardiomyopathy: relation to rest and exercise obstruction. Circulation 2008;118:1550–1557.

    Article  Google Scholar 

  29. Yoshibayashi M, Kamiya T, Saito Y, Matsuo H. Increased plasma levels of brain natriuretic peptide in hypertrophic cardiomyopathy. N Engl J Med. 1993;329(6):433–4.

    Article  CAS  Google Scholar 

  30. Hasegawa K, Fujiwara H, Doyama K, et al. Ventricular expression of brain natriuretic peptide in hypertrophic cardiomyopathy. Circ. 1993;88:372–80.

    Article  CAS  Google Scholar 

  31. Khan K, Talwar S. Screening for familial hypertrophic cardiomyopathy using brain natriuretic peptide. Eur Hrt Jrnl. 1999;20:550.

    CAS  Google Scholar 

  32. Maron B, Venkatakrishna N, Tholakanahalli N, Zenorich A, Casey S, Duprez D, Aeppli D, Cohn J. Usefulness of B-type natriuretic peptide assay in the assessment of symptomatic state in hypertrophic cardiomyopathy. Circ. 2004;109:984–9.

    Article  CAS  Google Scholar 

  33. Arteaga E, Araujo A, Buck P, Ianni B, Rabello R, Mady C. Plasma amino-terminal pro-B-type natriuretic peptide quantification in hypertrophic cardiomyopathy. Am Heart J. 2005;150:1228–32.

    Article  CAS  Google Scholar 

  34. Okawa M, Kitaoka H, Matsumura Y, Kubo T, Yamasaki N, Furuno T, Doi Y. Functional assessment by myocardial performance index (Tei Index) correlates with plasma brain natriuretic peptide concentration in patients with hypertrophic cardiomyopathy. Circ J. 2005;69:951–7.

    Article  CAS  Google Scholar 

  35. Mutlu B, Bayrak F, Kahveci G, Degertekin M, Eroglu E, Basaran Y. Usefulness of N-terminal Pro-B-type natriuretic peptide to predict clinical course in patients with hypertrophic cardiomyopathy. Am J Cardiol. 2006;98:1504–6.

    Article  CAS  Google Scholar 

  36. Thaman R, Esteban M, Barnes S, Gimeno J, Mist B, Murphy R, Collinson P, McKenna W, Elliott P. Usefulness of N-terminal Pro-B-type natriuretic peptide levels to predict exercise capacity in hypertrophic cardiomyopathy. Am J Cardiol. 2006;98:515–9.

    Article  CAS  Google Scholar 

  37. Pieroni M, Bellocci F, Sanna T, Verardo R, Ierardi C, Maseri A, Frustaci A, Crea F. Increased brain natriuretic peptide secretion is a marker of disease progression in nonobstructive hypertrophic cardiomyopathy. J Cardiac Fail. 2007;13:380–8.

    Article  CAS  Google Scholar 

  38. Magga J, Sipola P, Vuolteenaho O, Risteli J, Jääkeläinen P, Peuhkurinen K, Kuusisto J. Significance of plasma levels of N-terminal Pro-B-type natriuretic peptide on left ventricular remodeling in non-obstructive hypertrophic cardiomyopathy attributable to the Asp175Asn mutation in the α-Tropomyosin gene. Am J Cardiol 2008;101:1185–1190.

    Article  CAS  Google Scholar 

  39. Pagourelias ED, Giannoglou G, Kouidi E, Efthimiadis GK, Zorou P, Tziomalos K, Karagiannis A, Athyros VG, Geleris P, Mikhailidis DP. Brain natriuretic peptide and the athlete’s heart: a pilot study. Int J Clin Pract. 2010;64(4):511–7.

    Article  CAS  Google Scholar 

  40. Fox P, Rush J, Reynolds C, DeFrancesco T, Keene B, Atkins C, Gordon S, Schober K, Bonagura J, Stepien R, Kellihan H, MacDonald K, Lehmkuhl L, Nguyenba T, Moise N, Lefbom B, Hogan D, Oyama M. Multicenter evaluation of plasma N-terminal probrain natriuretic peptide (NT-pro BNP) as a biochemical screening test for asymptomatic (occult) cardiomyopathy in cats. J Vet Intern Med. 2011;25:1010–6.

    Article  CAS  Google Scholar 

  41. Fernandes F, Arteaga-Fernandez E, Atunes M, Buck P, Marsiglia J, Matsumoto A, Nastari L, Krieger J, Pereira A, Mady C. Plasma pro-B-type natriuretic peptide testing as a screening method of hypertrophic cardiomyopathy. J Cardiac Fail. 2012;18:564–8.

    Article  CAS  Google Scholar 

  42. Blackshear JL,  Safford RE, Thomas CS, Bos JM, Ackerman MJ, Geske JB, Ommen SR, Shapiro BP, Johns GS. Platelet function analyzer-100 and brain natriuretic peptide  as biomarkers in obstructive hypertrophic cardiomyopathy.  Am J Cardiol, 2017. https://doi.org/10.1016/j.amjcard.2017.12.009

    Article  CAS  Google Scholar 

  43. Blackshear JL, Schaff HV, Ommen SR, Chen D, Nichols WL Jr. Hypertrophic obstructive cardiomyopathy, bleeding history, and acquired von Willbrand syndrome: response to septal myectomy. Mayo Clinc Proc. 2011;86:219–24.

    Article  Google Scholar 

  44. Blackshear JL, Stark ME, Agnew RC, Moussa IM, Safford RE, Shapiro BP, Waldo OA, Chen D. Remission of recurrent gastrointestinal bleeding after septal reduction therapy in patients with hypertrophic obstructive cardiomyopathy-associated acquired von Willebrand syndrome. J Thromb Haemostasis. 2015;13:191–6.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph L. Blackshear .

Editor information

Editors and Affiliations

Questions

Questions

  1. 1.

    Acquired von Willebrand syndrome is limited to:

    1. A.

      Aortic stenosis

    2. B.

      Myeloproliferative disorders

    3. C.

      Obstructive hypertrophic cardiomyopathy

    4. D.

      Mitral regurgitation

    5. E.

      Not limited, occurs in all of the above

  • Answer: E. In any situation in which a large fraction of the circulating plasma is exposed to elevated shear stress during each cardiac cycle, the possibility of AVWS exists. It also occurs via immune mechanisms in myeloproliferative disorders, for example, monoclonal gammopathy of undetermined significance (MGUS).

  1. 2.

    Which statement best characterizes the post-secretion normal physiology of von Willebrand factor?

    1. A.

      VWF multimers are degraded by proteolysis during microcirculatory passage.

    2. B.

      VWF multimers are shortened by passage through the normal heart.

    3. C.

      VWF monomers are secreted and form multimers in the circulation.

    4. D.

      VWF multimer shortening is nonenzymatic.

    5. E.

      VWF is generated in the liver.

  • Answer: A. Unlike many proteins which are processed in organs, or after incoroporation into cells via specific receptors, the proteolytic enzyme which shortens VWF multimers, ADAMTS 13 circulates in plasma. The A2 domain binding site on VWF multimers is cryptic unless the globular protein is elongated, as during capillary transit, or in a high shear stress field.

  1. 3.

    Which of the following is not a characteristic of VWF

    1. A.

      Regulates angiogenesis

    2. B.

      Facilitates hemostasis in high shear environment

    3. C.

      Is a complex glycoprotein with several genetic variants causing von Willebrand disease

    4. D.

      Is secreted as a prohormone

    5. E.

      Carrier of coagulation factor VIII

  • Answer: D. VWF has numerous functions, including regulation of angiogenesis, and acting as a “molecular bus” for factor VIII. It is secreted as a fully formed ultrahigh molecular weight multimeric protein which is then reduced in size during microcirculatory passage by ADAM TS 13.

  1. 4.

    Which of the following correlate with pressure gradient in hypertrophic cardiomyopathy?

    1. A.

      VWF antigen

    2. B.

      VWF activity to antigen ratio

    3. C.

      Loss of high molecular weight multimers of VWF

    4. D.

      Platelet function analyzer collagen ADP closure time

    5. E.

      B, C, and D

  • Answer: E. Assays of VWF function which reflect the presence of high molecular weight multimers include PFA testing, VWF multimer analysis, and the VWF activity to antigen ratio (in some laboratories, a VWF collagen binding assay is substituted for VWF activity, and a VWF collagen binding activity / VWF antigen ratio is reported).

  1. 5.

    Which intervention most reliably normalized VWF multimers in a bleeding patient with obstructive hypertrophic cardiomyopathy?

    1. A.

      Beta blockers

    2. B.

      Disopyramide

    3. C.

      Pacing induced left bundle branch block

    4. D.

      Correction of atrial fibrillation

    5. E.

      Septal reduction therapy

  • Answer. E. Septal reduction therapy was associated with cessation of bleeding in patients with transfusion dependence, while medical therapy was associated with recurrence.

  1. 6.

    As screening biomarkers, BNP and PFA are:

    1. A.

      Redundant

    2. B.

      Complementarry

    3. C.

      Insensitive

    4. D.

      Non-specific

    5. E.

      Untested

  • Answer. B. As suggested by the prior question, VWF measures correlate with the amount of turbulence present from a combination of high LVOT gradient and significant associated mitral regurgitation. BNP reflects the degree of structural abnormality as measured by degree of hypertrophy and also as reflected in elevation of filling pressures.

  1. 7.

    In patients with severe aortic stenosis, which of the following is incorrect?

    1. A.

      VWF multimers normalize almost immediately after valve replacement.

    2. B.

      If VWM multimers are abnormal prior to valve replacement, use of a mechanical prosthesis and anticoagulation increases bleeding risk.

    3. C.

      VWF multimers may fail to correct if either ≥moderate paraprosthetic regurgitation or patient prosthesis mismatch is present.

    4. D.

      PFA can be a useful test periprocedurally in transcatheter aortic valve replacement as a biomarker of ≥moderate paraprosthetic regurgitation.

    5. E.

      Balloon aortic valvuloplasty rarely causes VWF multimers to normalize.

  • Answer: B. Once the turbulence associated with severe aortic stenosis is relieved, newly secreted multimers retain their high molecular weight status, and values rapidly return to normal. Despite a very high rate of abnormal VWF multimers before aortic valve replacement, bleeding in anticoagulated patients with mechanical valves after surgery is not increased.

  1. 8.

    What percent of severe aortic stenosis or obstructive hypertrophic cardiomyopathy patients have loss of high molecular weight multimers of VWF?

    1. A.

      10%

    2. B.

      25%

    3. C.

      70-90%

    4. D.

      100%

    5. E.

      50%

  • Answer: C. The percentage of abnormal VWF multimers reaches 100% only in the LVAD population. For other entities which physicians categorize as severe by usual echocardiographic and hemodynamic criteria, multimer abnormalities are present in 70–90%.

  1. 9.

    A patient with frequent epistaxis, some requiring emergency room visits, has class III angina and a left ventricular outflow tract resting instantaneous gradient of 55 mm Hg. VWF multimer testing is abnormal. She is to undergo septal myectomy for symptoms. Based on these data, you tell her:

    1. A.

      Nosebleeds are likely to stop after.

    2. B.

      Nosebleeds will not be affected by surgery

    3. C.

      Bleeding risk during surgery is high

    4. D.

      She must have an ENT consult before surgery

    5. E.

      She may not take aspirin or anticoagulation after surgery

  • Answer: A. Mucosal bleeding, i.e., GI and nasal, are the two most common clinical manifestations of AVWS due to cardiac lesions. The high gradient, and abnormal lab tests of VWF function, and the high likelihood of a good hemodynamic response from myectomy suggest that epistaxis will be cured by myectomy.

  1. 10.

    Based on case reporting thus far, transfusion- dependent gastrointestinal bleeding from acquired von Willebrand syndrome in hypertrophic cardiomyopathy occurs in:

    1. A.

      Equal percentages of men and women

    2. B.

      Much higher frequency in women compared to men

    3. C.

      Much higher frequency in men compared to women

    4. D.

      Slightly more prevalent in women versus men

    5. E.

      Slightly more prevalent in men versus women

  • Answer: B. Like takotsubo cardiomyopathy, this entity has shown a much higher occurrence in women versus men. This appears to be unique to hypertrophic cardiomyopathy, since such a gender imbalance of AVWS does not occur with other high shear states such as aortic stenosis or mitral regurgitation. Smaller chamber size in women compared to me could be a factor, but the precise reason why this should be is unknown.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Blackshear, J.L. (2019). Epiphenomena in Hypertrophic Cardiomyopathy: Acquired von Willebrand Syndrome. In: Naidu, S. (eds) Hypertrophic Cardiomyopathy. Springer, Cham. https://doi.org/10.1007/978-3-319-92423-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92423-6_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92422-9

  • Online ISBN: 978-3-319-92423-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics