Skip to main content

Abstract

This chapter outlines a new non-invasive method for delineation of skin lesions such as lentigo maligna and lentigo maligna melanoma. The method is based on the analysis of hyperspectral (HS) images taken in vivo before surgical excision of the lesions. For this, characteristic features of the spectral signatures of diseased pixels and healthy pixels are extracted, which combine the intensities in a few selected wavebands with the coefficients of the wavelet frame transforms of the spectral curves. To reduce dimensionality and to reveal the internal structure of the datasets, the diffusion maps (DM) technique is applied. The averaged Nearest Neighbor and the Classification and Regression Tree (CART) classifiers are utilized as the decision units. To reduce false alarms by the CART classifier, the Aisles procedure is used. The chapter is based on the paper (Zheludev et al, Biomed Signal Process Control, 16:48–60, (2015), [15]).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Averbuch, E. Hulata, V. Zheludev, I. Kozlov, A wavelet packet algorithm for classification and detection of moving vehicles. Multidimens. Syst. Signal Process. 12(1), 9–31 (2001)

    Article  Google Scholar 

  2. A. Averbuch, V. Zheludev, T. Cohen, Interpolatory frames in signal space. IEEE Trans. Signal Process. 54(6), 2126–2139 (2006)

    Article  Google Scholar 

  3. A.Z. Averbuch, P. Neittaanmäki, V.A. Zheludev, Spline and Spline Wavelet Methods with Applications to Signal and Image Processing, Volume II: Non-periodic Splines (Springer, Berlin, 2015)

    MATH  Google Scholar 

  4. A. Bermanis, A. Averbuch, R.R. Coifman, Multiscale data sampling and function extension. Appl. Comput. Harmon. Anal. 34(1), 15–29 (2013)

    Article  MathSciNet  Google Scholar 

  5. L. Breiman, J.H. Friedman, R.A. Olshen, C.J. Stone, Classification and Regression Trees (Wadsworth, Belmont, 1984)

    Google Scholar 

  6. Fan R.K. Chung, Spectral Graph Theory (CBMS Regional Conference Series in Mathematics), vol. 92 (American Mathematical Society, Providence, 1996)

    Google Scholar 

  7. G. Clark, E. Pappas-Politis, B. Cherpelis, J. Messina, M. Müller, C. Cruse, L. Glass, Surgical management of melanoma in situ on chronically sun-damaged skin. Cancer Control 15(3), 216–224 (2008)

    Article  Google Scholar 

  8. R.R. Coifman, S. Lafon, Diffusion maps. Appl. Comput. Harmon. Anal. Spec. Issue Diffus. Maps Wavelets 21(1), 5–30 (2006)

    Article  MathSciNet  Google Scholar 

  9. R.R. Coifman, S. Lafon, Geometric harmonics: a novel tool for multiscale out-of-sample extension of empirical functions. Appl. Comput. Harmon. Anal. Spec. Issue Diffus. Maps Wavelets 21(1), 31–52 (2006)

    Article  MathSciNet  Google Scholar 

  10. A. Glaser, S. Lafon, Y. Keller, R.R. Coifman, Data fusion and multi-cue data matching by diffusion maps. IEEE Trans. Pattern Anal. Mach. Intell. 28(11), 1784–1797 (2006)

    Article  Google Scholar 

  11. P.C. Mahalanobis, On the generalised distance in statistics. Proc. Natl. Inst. Sci. India 2(1), 49–55 (1936)

    MathSciNet  MATH  Google Scholar 

  12. J.K. McKenna, S.R. Florell, G.D. Goldman, G.M. Bowen, Lentigo maligna/lentigo maligna melanoma: current state of diagnosis and treatment. Dermatol. Surg. 32(4), 493–504 (2006)

    Google Scholar 

  13. E.J. Nyström, Über die praktische auflösung von linearen integralgleichungen mit anwendungen auf randwertaufgaben der potentialtheorie. Comment. Phys.-Math. 4(15), 1–52 (1928)

    Google Scholar 

  14. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes in C: The Art of Scientific Computing, 2nd edn. (Cambridge University Press, New York, 1992)

    MATH  Google Scholar 

  15. V. Zheludev, I. Pölönen, N. Neittaanäki-Perttu, A. Averbuch, P. Neittaanmäki, M. Grönroos, H. Saari, Delineation of malignant skin tumors by hyperspectral imaging using diffusion maps dimensionality reduction. Biomed. Signal Process. Control 16, 48–60 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Z. Averbuch .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Averbuch, A.Z., Neittaanmäki, P., Zheludev, V.A. (2019). Delineation of Malignant Skin Tumors by Hyperspectral Imaging. In: Spline and Spline Wavelet Methods with Applications to Signal and Image Processing. Springer, Cham. https://doi.org/10.1007/978-3-319-92123-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92123-5_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92122-8

  • Online ISBN: 978-3-319-92123-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics