Skip to main content

Abstract

This chapter describes an application of the spline-based wavelet frames to the spectral imaging. It presents a method that enables to convert a regular digital camera into a snapshot spectral imager by equipping the camera with a dispersive diffuser and with a compressed sensing-based algorithm for digital processing. The method relies on the assumption that typical images can be sparsely represented in the frame domain. The solution is found from the constrained \(l_{1}\) minimization of a functional by Bregman iterations. Results of optical experiments are reported. The chapter is based on the paper (Golub et al., Appl. Opt. 55, 432–443, (2016), [11]).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    L is the number of spectral bands in the spectral cube.

References

  1. H. Arguello, C.V. Correa, G.R. Arce, Fast lapped block reconstructions in compressive spectral imaging. Appl. Opt. 52, D32–D45 (2013)

    Article  Google Scholar 

  2. Y. August, C. Vachman, Y. Rivenson, A. Stern, Compressive spectral imaging by random separable projections in both the spatial and the spectral domains. Appl. Opt. 52, D46–D54 (2013)

    Article  Google Scholar 

  3. D.J. Brady, Optical Imaging and Spectroscopy (Wiley-Interscience, Hoboken, 2009)

    Google Scholar 

  4. J.F. Cai, S. Osher, Z. Shen, Split Bregman methods and frame based image restoration. Multiscale Model. Simul. 8(2), 337–369 (2009/2010)

    Article  MathSciNet  Google Scholar 

  5. J.F. Cai, S. Osher, Z. Shen, Split Bregman methods and frame based image restoration. Multiscale Model. Simul.: SIAM Interdiscip. J. 8, 337–369 (2009)

    Article  MathSciNet  Google Scholar 

  6. E. Candes, J. Romberg, T. Tao, Stable signal recovery from incomplete and inaccurate measurements. Commun. Pure Appl. Math. 59(8), 1207–1223 (2006)

    Article  MathSciNet  Google Scholar 

  7. D. Donoho, Compressed sensing. IEEE Trans. Inf. Theory 52 (2006)

    Article  MathSciNet  Google Scholar 

  8. D.H. Foster, K. Amano, S.M.C. Nascimento, M.J. Foster, Frequency of metamerism in natural scenes. J. Opt. Soc. Am. A 23, 2359 (2006)

    Article  Google Scholar 

  9. Y. Garini, I.T. Young, G. McNamara, Spectral imaging: principles and applications. Cytom. Part A, Spec. Issue: Spectr. Imaging 69A, 735–747 (2006)

    Article  Google Scholar 

  10. T. Goldstein, S. Osher, The split Bregman method for \(L1\)-regularized problems. SIAM J. Imaging Sci. 2(2), 323–343 (2009)

    Article  MathSciNet  Google Scholar 

  11. M. Golub, A. Averbuch, M. Nathan, V. Zheludev, J. Hauser, S. Gurevitch, R. Malinsky, A. Kagan, Compressed sensing snapshot spectral imaging by a regular digital camera with an added optical diffuser. Appl. Opt. 55, 432–443 (2016)

    Article  Google Scholar 

  12. M.A. Golub, M. Nathan, A. Averbuch, E. Lavi, V.A. Zheludev, A. Schclar, Spectral multiplexing method for digital snapshot spectral imaging. Appl. Opt. 48, 1520–1526 (2009)

    Article  Google Scholar 

  13. H. Ji, Z. Shen, Y. Xu, Wavelet based restoration of images with missing or damaged pixels. East Asian J. Appl. Math. 1(2), 108–131 (2011)

    Article  Google Scholar 

  14. D. Kittle, K. Choi, A. Wagadarikar, D. Brady, Multiframe image estimation for coded aperture snapshot spectral imagers. Appl. Opt. 49(7), 6824–6833 (2010)

    Article  Google Scholar 

  15. H. Lang, Advances in multispectral and hyperspectral imaging for archaeology and art conservation. Appl. Phys. 106, 309–323 (2012)

    Google Scholar 

  16. C. Li, T. Sun, K. Kelly, Y. Zhang, A compressive sensing and unmixing scheme for hyperspectral data. IEEE Trans. Image Process. 3, 1200–1210 (2012)

    Google Scholar 

  17. Q. Zhang, R. Plemmons, D. Kittle, D. Brady, S. Prasad, Joint segmentation and reconstruction of hyperspectral data with compressed measurements. Appl. Opt. 50, 4417 (2011)

    Article  Google Scholar 

  18. V. Zheludev, I. Pölönen, N. Neittaanäki-Perttu, A. Averbuch, P. Neittaanmäki, M. Grönroos, H. Saari, Delineation of malignant skin tumors by hyperspectral imaging using diffusion maps dimensionality reduction. Biomed. Signal Process. Control 16, 48–60 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Z. Averbuch .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Averbuch, A.Z., Neittaanmäki, P., Zheludev, V.A. (2019). Snapshot Spectral Imaging. In: Spline and Spline Wavelet Methods with Applications to Signal and Image Processing. Springer, Cham. https://doi.org/10.1007/978-3-319-92123-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92123-5_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92122-8

  • Online ISBN: 978-3-319-92123-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics