Skip to main content

Polynomial-Time Algorithms for Phylogenetic Inference Problems

  • Conference paper
  • First Online:
Algorithms for Computational Biology (AlCoB 2018)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 10849))

Included in the following conference series:

Abstract

A common problem in phylogenetics is to try to infer a species phylogeny from gene trees. We consider different variants of this problem. The first variant, called Unrestricted Minimal Episodes Inference, aims at inferring a species tree based on a model of speciation and duplication where duplications are clustered in duplication episodes. The goal is to minimize the number of such episodes. The second variant, Parental Hybridization, aims at inferring a species network based on a model of speciation and reticulation. The goal is to minimize the number of reticulation events. It is a variant of the well-studied Hybridization Number problem with a more generous view on which gene trees are consistent with a given species network. We show that these seemingly different problems are in fact closely related and can, surprisingly, both be solved in polynomial time, using a structure we call “beaded trees”. However, we also show that methods based on these problems have to be used with care because the optimal species phylogenies always have some restricted form. We discuss several possibilities to overcome this problem.

Research funded in part by the Netherlands Organization for Scientific Research (NWO), including Vidi grant 639.072.602, the 4TU Applied Mathematics Institute, the Natural Sciences and Engineering Research Council of Canada and the Canada Research Chairs program.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aho, A.V., Sagiv, Y., Szymanski, T.G., Ullman, J.D.: Inferring a tree from lowest common ancestors with an application to the optimization of relational expressions. SIAM J. Comput. 10, 405–421 (1981)

    Article  MathSciNet  Google Scholar 

  2. Albertin, W., Marullo, P.: Polyploidy in fungi: evolution after whole-genome duplication. Proc. Roy. Soci. Lond. B Biol. Sci. 279(1738), 2497–2509 (2012)

    Article  Google Scholar 

  3. Bansal, M.S., Eulenstein, O.: The multiple gene duplication problem revisited. Bioinformatics 24(13), i132–i138 (2008)

    Article  Google Scholar 

  4. Bordewich, M., Semple, C.: Computing the minimum number of hybridization events for a consistent evolutionary history. Discrete Appl. Math. 155(8), 914–928 (2007)

    Article  MathSciNet  Google Scholar 

  5. Burleigh, J.G., Bansal, M.S., Eulenstein, O., Vision, T.J.: Inferring species trees from gene duplication episodes. In: Proceedings of the First ACM International Conference on Bioinformatics and Computational Biology, pp. 198–203. ACM (2010)

    Google Scholar 

  6. Burleigh, J.G., Bansal, M.S., Wehe, A., Eulenstein, O.: Locating multiple gene duplications through reconciled trees. In: Vingron, M., Wong, L. (eds.) RECOMB 2008. LNCS, vol. 4955, pp. 273–284. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78839-3_24

    Chapter  Google Scholar 

  7. Chan, Y.B., Ranwez, V., Scornavacca, C.: Reconciliation-based detection of co-evolving gene families. BMC Bioinform. 14(1), 332 (2013)

    Article  Google Scholar 

  8. Dehal, P., Boore, J.L.: Two rounds of whole genome duplication in the ancestral vertebrate. PLoS Biol. 3(10), e314 (2005)

    Article  Google Scholar 

  9. Fellows, M., Hallett, M., Stege, U.: On the multiple gene duplication problem. In: Chwa, K.-Y., Ibarra, O.H. (eds.) ISAAC 1998. LNCS, vol. 1533, pp. 348–357. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-49381-6_37

    Chapter  Google Scholar 

  10. Glasauer, S.M., Neuhauss, S.C.: Whole-genome duplication in teleost fishes and its evolutionary consequences. Mol. Genet. Genomics 289(6), 1045–1060 (2014)

    Article  Google Scholar 

  11. Goodman, M., Czelusniak, J., Moore, G.W., Romero-Herrera, A.E., Matsuda, G.: Fitting the gene lineage into its species lineage, a parsimony strategy illustrated by cladograms constructed from globin sequences. Syst. Biol. 28(2), 132–163 (1979)

    Article  Google Scholar 

  12. Guigo, R., Muchnik, I., Smith, T.F.: Reconstruction of ancient molecular phylogeny. Mol. Phylogenet. Evol. 6(2), 189–213 (1996)

    Article  Google Scholar 

  13. Huber, K.T., Moulton, V., Steel, M., Wu, T.: Folding and unfolding phylogenetic trees and networks. J. Math. Biol. 73(6–7), 1761–1780 (2016)

    Article  MathSciNet  Google Scholar 

  14. van Iersel, L., Janssen, R., Jones, M., Murakami, Y., Zeh, N.: Polynomial-time algorithms for phylogenetic inference problems (2018). arXiv:1802.00317 [q-bio.PE]

  15. van Iersel, L., Kelk, S., Scornavacca, C.: Kernelizations for the hybridization number problem on multiple nonbinary trees. J. Comput. Syst. Sci. 82(6), 1075–1089 (2016)

    Article  MathSciNet  Google Scholar 

  16. Luo, C.W., Chen, M.C., Chen, Y.C., Yang, R.W., Liu, H.F., Chao, K.M.: Linear-time algorithms for the multiple gene duplication problems. IEEE/ACM Trans. Comput. Biol. Bioinf. 8(1), 260–265 (2011)

    Article  Google Scholar 

  17. Ma, B., Li, M., Zhang, L.: From gene trees to species trees. SIAM J. Comput. 30(3), 729–752 (2000)

    Article  MathSciNet  Google Scholar 

  18. Mettanant, V., Fakcharoenphol, J.: A linear-time algorithm for the multiple gene duplication problem. In: National Computer Science and Engineering Conference (Thailand) (2008)

    Google Scholar 

  19. Page, R.D.: Maps between trees and cladistic analysis of historical associations among genes, organisms, and areas. Syst. Biol. 43(1), 58–77 (1994)

    Google Scholar 

  20. Panchy, N., Lehti-Shiu, M., Shiu, S.H.: Evolution of gene duplication in plants. Plant Physiol. 171(4), 2294–2316 (2016)

    Google Scholar 

  21. Paszek, J., Gorecki, P.: Efficient algorithms for genomic duplication models. IEEE/ACM Trans. Comput. Biol. Bioinform. (2017)

    Google Scholar 

  22. Zhang, J.: Evolution by gene duplication: an update. Trends Ecol. Evol. 18(6), 292–298 (2003)

    Article  Google Scholar 

  23. Zhu, J., Yu, Y., Nakhleh, L.: In the light of deep coalescence: revisiting trees within networks. BMC Bioinform. 17(14), 415 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leo van Iersel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

van Iersel, L., Janssen, R., Jones, M., Murakami, Y., Zeh, N. (2018). Polynomial-Time Algorithms for Phylogenetic Inference Problems. In: Jansson, J., Martín-Vide, C., Vega-Rodríguez, M. (eds) Algorithms for Computational Biology. AlCoB 2018. Lecture Notes in Computer Science(), vol 10849. Springer, Cham. https://doi.org/10.1007/978-3-319-91938-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91938-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91937-9

  • Online ISBN: 978-3-319-91938-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics