Skip to main content

Reconciliation Feasibility of Non-binary Gene Trees Under a Duplication-Loss-Coalescence Model

  • Conference paper
  • First Online:
Algorithms for Computational Biology (AlCoB 2018)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 10849))

Included in the following conference series:

  • 440 Accesses

Abstract

Phylogenetic tree reconciliation is a widely-used method to understand gene family evolution. For eukaryotes, the duplication-loss-coalescence (DLC) model seeks to explain incongruence between gene trees and species trees by postulating gene duplication, gene loss, and deep coalescence events. While efficient algorithms exist for inferring optimal DLC reconciliations, they assume that only one individual is sampled per species. In recent work, we demonstrated that with additional samples, there exist gene tree topologies that are impossible to reconcile with any species tree. However, our algorithm required the gene tree to be binary whereas, in practice, gene trees are often non-binary due to uncertainty in the reconstruction process. In this work, we consider for the first time reconciliation under the DLC model with non-binary gene trees. Specifically, we describe an efficient algorithm that takes as input an arbitrary gene tree with an arbitrary number of samples per species and either (1) determines that there is a valid reconcilable binary resolution of that tree and constructs one such resolution or (2) determines that there exists no valid reconcilable binary resolution of that tree. Our work makes it possible to systematically analyze non-binary gene trees and will help biologists identify incorrect gene tree topologies and thus avoid incorrect evolutionary inferences.

M. Dohlen and C. Pekker—These authors contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Branch lengths are not used in this work, so a tree always refers to a tree topology.

  2. 2.

    The proof considers only the single unique path between two genes in a binary tree.

  3. 3.

    Note that this locus tree is distinct from the locus tree of Rasmussen and Kellis [25].

  4. 4.

    For example, in Fig. 3, swapping leaves labeled \(a_2\) with leaves labeled \(c_1\) would result in an irreconcilable LEG and thus a multifurcating gene tree for which there exists no reconcilable binarization.

  5. 5.

    While most reconciliation algorithms do not support multiple samples per species nor non-binary gene trees, the former extension is fairly straightforward while the latter requires new algorithms.

References

  1. Åkerborg, Ö., Sennblad, B., Arvestad, L., Lagergren, J.: Simultaneous Bayesian gene tree reconstruction and reconciliation analysis. Proc. Nat. Acad. Sci. USA 106(14), 5714–5719 (2009)

    Article  Google Scholar 

  2. Albalat, R., Cañestro, C.: Evolution by gene loss. Nat. Rev. Genet. 17, 379 (2016)

    Article  Google Scholar 

  3. Bansal, M.S., Alm, E.J., Kellis, M.: Efficient algorithms for the reconciliation problem with gene duplication, horizontal transfer and loss. Bioinformatics 28(12), i283–i291 (2012)

    Article  Google Scholar 

  4. Burleigh, J.G., Bansal, M.S., Eulenstein, O., Hartmann, S., Wehe, A., Vision, T.J.: Genome-scale phylogenetics: inferring the plant tree of life from 18,896 gene trees. Syst. Biol. 60(2), 117–125 (2011)

    Article  Google Scholar 

  5. Chang, W.-C., Eulenstein, O.: Reconciling gene trees with apparent polytomies. In: Chen, D.Z., Lee, D.T. (eds.) COCOON 2006. LNCS, vol. 4112, pp. 235–244. Springer, Heidelberg (2006). https://doi.org/10.1007/11809678_26

    Chapter  Google Scholar 

  6. Chauve, C., Doyon, J.P., El-Mabrouk, N.: Gene family evolution by duplication, speciation, and loss. J. Comput. Biol. 15(8), 1043–1062 (2008)

    Article  MathSciNet  Google Scholar 

  7. Chen, K., Durand, D., Farach-Colton, M.: NOTUNG: a program for dating gene duplications and optimizing gene family trees. J. Comput. Biol. 7(3–4), 429–447 (2000)

    Article  Google Scholar 

  8. Chen, Z.Z., Deng, F., Wang, L.: Simultaneous identification of duplications, losses, and lateral gene transfers. IEEE/ACM Trans. Comput. Biol. Bioinform. 9(5), 1515–1528 (2012)

    Article  Google Scholar 

  9. Conow, C., Fielder, D., Ovadia, Y., Libeskind-Hadas, R.: Jane: a new tool for the cophylogeny reconstruction problem. Algorithm. Mol. Biol. 5(16) (2010). https://almob.biomedcentral.com/articles/10.1186/1748-7188-5-16

    Article  Google Scholar 

  10. David, L.A., Alm, E.J.: Rapid evolutionary innovation during an archaean genetic expansion. Nature 469(7328), 93–96 (2011)

    Article  Google Scholar 

  11. Degnan, J.H., Rosenberg, N.A.: Gene tree discordance, phylogenetic inference and the multispecies coalescent. Trends Ecol. Evol. 24(6), 332–340 (2009)

    Article  Google Scholar 

  12. Delsuc, F., Brinkmann, H., Philippe, H.: Phylogenomics and the reconstruction of the tree of life. Nat. Rev. Genet. 6(5), 361–375 (2005)

    Article  Google Scholar 

  13. Doyon, J.-P., Scornavacca, C., Gorbunov, K.Y., Szöllősi, G.J., Ranwez, V., Berry, V.: An efficient algorithm for gene/species trees parsimonious reconciliation with losses, duplications and transfers. In: Tannier, E. (ed.) RECOMB-CG 2010. LNCS, vol. 6398, pp. 93–108. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16181-0_9

    Chapter  Google Scholar 

  14. Goodman, M., Czelusniak, J., Moore, G.W., Romero-Herrera, A., Matsuda, G.: Fitting the gene lineage into its species lineage, a parsimony strategy illustrated by cladograms constructed from globin sequences. Syst. Zool. 28(2), 132–163 (1979)

    Article  Google Scholar 

  15. Górecki, P., Tiuryn, J.: Dls-trees: a model of evolutionary scenarios. Theor. Comput. Sci. 359(1–3), 378–399 (2006)

    Article  MathSciNet  Google Scholar 

  16. Koonin, E.V.: Orthologs, paralogs, and evolutionary genomics. Annu. Rev. Genet. 39(1), 309–338 (2005)

    Article  Google Scholar 

  17. Kordi, M., Bansal, M.S.: Exact algorithms for duplication-transfer-loss reconciliation with non-binary gene trees. IEEE/ACM Trans. Comput. Biol. Bioinform. PP(99), 1 (2018)

    Google Scholar 

  18. Lafond, M., Swenson, K.M., El-Mabrouk, N.: An optimal reconciliation algorithm for gene trees with polytomies. In: Raphael, B., Tang, J. (eds.) WABI 2012. LNCS, vol. 7534, pp. 106–122. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33122-0_9

    Chapter  Google Scholar 

  19. Maddison, W.P.: Gene trees in species trees. Syst. Biol. 46(3), 523–536 (1997)

    Article  Google Scholar 

  20. Ochman, H.: Lateral and oblique gene transfer. Curr. Opin. Genet. Dev. 11(6), 616–619 (2001)

    Article  Google Scholar 

  21. Ohno, S.: Evolution by Gene Duplication. Springer, Heidelberg (1970). https://doi.org/10.1007/978-3-642-86659-3

    Book  Google Scholar 

  22. Page, R.D.: Maps between trees and cladistic analysis of historical associations among genes, organisms, and areas. Syst. Biol. 43(1), 58–77 (1994)

    Google Scholar 

  23. Rannala, B., Yang, Z.: Bayes estimation of species divergence times and ancestral population sizes using DNA sequences from multiple loci. Genetics 164(4), 1645–1656 (2003)

    Google Scholar 

  24. Rasmussen, M.D., Kellis, M.: A Bayesian approach for fast and accurate gene tree reconstruction. Mol. Biol. Evol. 28(1), 273–290 (2011)

    Article  Google Scholar 

  25. Rasmussen, M.D., Kellis, M.: Unified modeling of gene duplication, loss, and coalescence using a locus tree. Genome. Res. 22, 755–765 (2012)

    Article  Google Scholar 

  26. Rogers, J., Fishberg, A., Youngs, N., Wu, Y.C.: Reconciliation feasibility in the presence of gene duplication, loss, and coalescence with multiple individuals per species. BMC Bioinform. 18, 292 (2017)

    Article  Google Scholar 

  27. Slowinski, J.B.: Molecular polytomies. Mol. Phylogenet. Evol. 19(1), 114–120 (2001)

    Article  Google Scholar 

  28. Stamatakis, A.: RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22(21), 2688–2690 (2006)

    Article  Google Scholar 

  29. Tofigh, A., Hallett, M., Lagergren, J.: Simultaneous identification of duplications and lateral gene transfers. IEEE/ACM Trans. Comput. Biol. Bioinform. 8(2), 517–535 (2011)

    Article  Google Scholar 

  30. Vilella, A.J., Severin, J., Ureta-Vidal, A., Heng, L., Durbin, R., Birney, E.: Ensemblcompara genetrees: complete, duplication-aware phylogenetic trees in vertebrates. Genome. Res. 19(2), 327–335 (2009)

    Article  Google Scholar 

  31. Wu, T., Zhang, L.: Structural properties of the reconciliation space and their applications in enumerating nearly-optimal reconciliations between a gene tree and a species tree. BMC Bioinform. 12(Suppl 9), S7 (2011)

    Article  Google Scholar 

  32. Wu, Y.C., Rasmussen, M.D., Bansal, M.S., Kellis, M.: Most parsimonious reconciliation in the presence of gene duplication, loss, and deep coalescence using labeled coalescent trees. Genome Res. 24(3), 475–486 (2014)

    Article  Google Scholar 

  33. Zhang, L.: From gene trees to species trees ii: species tree inference by minimizing deep coalescence events. IEEE/ACM Trans. Comput. Biol. Bioinform. 8(6), 1685–1691 (2011)

    Article  Google Scholar 

  34. Zheng, Y., Zhang, L.: Reconciliation with non-binary Gene trees revisited. In: Sharan, R. (ed.) RECOMB 2014. LNCS, vol. 8394, pp. 418–432. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-05269-4_33

    Chapter  Google Scholar 

  35. Zmasek, C.M., Eddy, S.R.: A simple algorithm to infer gene duplication and speciation events on a gene tree. Bioinformatics 17(9), 821–828 (2001)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by funds from the Department of Computer Science and the Dean of Faculty of Harvey Mudd College and by the U.S. National Science Foundation under grant IIS-1419739.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-Chieh Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cheng, R. et al. (2018). Reconciliation Feasibility of Non-binary Gene Trees Under a Duplication-Loss-Coalescence Model. In: Jansson, J., Martín-Vide, C., Vega-Rodríguez, M. (eds) Algorithms for Computational Biology. AlCoB 2018. Lecture Notes in Computer Science(), vol 10849. Springer, Cham. https://doi.org/10.1007/978-3-319-91938-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91938-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91937-9

  • Online ISBN: 978-3-319-91938-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics