Skip to main content

Mucosal B Cells

  • Chapter
  • First Online:
Humoral Primary Immunodeficiencies

Abstract

Mucosal B cells are crucial for host defense. The mucosal surfaces exceed 300 m2 in humans and represent indeed the largest part of the body in which immune responses take place daily. Mucosal B cells, located in the gut, respiratory, and urogenital mucosae as well as in skin, salivary, mammary, and lacrimal glands, are very important to protect ourselves from infections. Most harmful pathogens enter the body through the mucosal surfaces by ingestion, inhalation, or sexual contact. This chapter focuses on the mechanisms that coordinate B-cell development as well as on the mechanisms used by mucosal B cells and mucosal IgA to give protection to the host.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Montecino-Rodriguez E, Dorshkind K. B-1 B cell development in the fetus and adult. Immunity. 2012;36:13–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Baumgarth N. The double life of a B-1 cell: self-reactivity selects for protective effector functions. Nat Rev Immunol. 2011;11(1):34–46.

    Article  CAS  PubMed  Google Scholar 

  3. Grönwall C, Vas J, Silverman GJ. Protective roles of natural IgM antibodies. Front Immunol. 2012;3:66.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Suzuki K, Maruya M, Kawamoto S, Fagarasan S. Roles of B-1 and B-2 cells in innate and acquired IgA-mediated immunity. Immunol Rev. 2010;237:180–90.

    Article  CAS  PubMed  Google Scholar 

  5. Griffin DO, Holodick NE, Rothstein TL. Human B1 cells in umbilical cord and adult peripheral blood express the novel phenotype CD20+ CD27+ CD43+ CD70. J Exp Med. 2011;208(1):67–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tangye SG. To B1 or not to B1: that really is still the question! Blood. 2013;121(26):5109–10.

    Article  CAS  PubMed  Google Scholar 

  7. Cerutti A, Cols M, Puga I. Marginal zone B cells: virtues of innate-like antibody-producing lymphocytes. Nat Rev Immunol. 2013;13(2):118–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pillai S, Cariappa A. The follicular versus marginal zone B lymphocyte cell fate decision. Nat Rev Immunol. 2009;9(11):767–77.

    Article  CAS  PubMed  Google Scholar 

  9. Thomas MD, Srivastava B, Allman D. Regulation of peripheral B cell maturation. Cell Immunol. 2006;239:92–102.

    Article  CAS  PubMed  Google Scholar 

  10. Wardemann H, Yurasov S, Schaefer A, Young JW, Meffre E, Nussenzweig MC. Predominant autoantibody production by early human B cell precursors. Science. 2003;301(5638):1374–7.

    Article  CAS  PubMed  Google Scholar 

  11. Cambier JC, Gauld SB, Merrell KT, Vilen BJ. B-cell anergy: from transgenic models to naturally occurring anergic B cells? Nat Rev Immunol. 2007;7(8):633–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Meffre E, Wardemann H. B-cell tolerance checkpoints in health and autoimmunity. Curr Opin Immunol. 2008;20:632–8.

    Article  CAS  PubMed  Google Scholar 

  13. Mei HE, Yoshida T, Sime W, Hiepe F, Thiele K, Manz RA, et al. Blood-borne human plasma cells in steady state are derived from mucosal immune responses. Blood. 2009;113(11):2461–9.

    Article  CAS  PubMed  Google Scholar 

  14. Weitkamp JH, Kallewaard NL, Bowen AL, Lafleur BJ, Greenberg HB, Crowe JE Jr. VH1-46 is the dominant immunoglobulin heavy chain gene segment in rotavirus-specific memory B cells expressing the intestinal homing receptor alpha4beta7. J Immunol. 2005;174(6):3454–60.

    Article  CAS  PubMed  Google Scholar 

  15. Macpherson AJ, McCoy KD, Johansen FE, Brandtzaeg P. The immune geography of IgA induction and function. Mucosal Immunol. 2008;1(1):11–22.

    Article  CAS  PubMed  Google Scholar 

  16. Cornes JS. Number, size, and distribution of Peyer’s patches in the human small intestine: Part I The development of Peyer’s patches. Gut. 1965;6(3):225–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Peterson DA, McNulty NP, Guruge JL, Gordon JI. IgA response to symbiotic bacteria as a mediator of gut homeostasis. Cell Host Microbe. 2007;2(5):328–39.

    Article  CAS  PubMed  Google Scholar 

  18. Obata T, Goto Y, Kunisawa J, Sato S, Sakamoto M, Setoyama H, et al. Indigenous opportunistic bacteria inhabit mammalian gut-associated lymphoid tissues and share a mucosal antibody-mediated symbiosis. Proc Natl Acad Sci U S A. 2010;107(16):7419–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Baker J, Garrod D. Epithelial cells retain junctions during mitosis. J Cell Sci. 1993;104(Pt 2):415–25.

    PubMed  Google Scholar 

  20. Peters BM, Shirtliff ME, Jabra-Rizk MA. Antimicrobial peptides: primeval molecules or future drugs? PLoS Pathog. 2010;6(10):e1001067.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Dann SM, Eckmann L. Innate immune defenses in the intestinal tract. Curr Opin Gastroenterol. 2007;23(2):115–20.

    Article  CAS  PubMed  Google Scholar 

  22. Kraehenbuhl JP, Neutra MR. Epithelial M cells: differentiation and function. Annu Rev Cell Dev Biol. 2000;16:301–32.

    Article  CAS  PubMed  Google Scholar 

  23. Wolf JL, Rubin DH, Finberg R, Kauffman RS, Sharpe AH, Trier JS, et al. Intestinal M cells: a pathway for entry of reovirus into the host. Science. 1981;212(4493):471–2.

    Article  CAS  PubMed  Google Scholar 

  24. Golovkina TV, Shlomchik M, Hannum L, Chervonsky A. Organogenic role of B lymphocytes in mucosal immunity. Science. 1999;286(5446):1965–8.

    Article  CAS  PubMed  Google Scholar 

  25. Endsley MA, Njongmeta LM, Shell E, Ryan MW, Indrikovs AJ, Ulualp S, et al. Human IgA-inducing protein from dendritic cells induces IgA production by naive IgD+ B cells. J Immunol. 2009;182(4):1854–9.

    Article  CAS  PubMed  Google Scholar 

  26. Spencer J, MacDonald TT, Finn T, Isaacson PG. The development of gut associated lymphoid tissue in the terminal ileum of fetal human intestine. Clin Exp Immunol. 1986;64(3):536–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Benckert J, Schmolka N, Kreschel C, Zoller MJ, Sturm A, Wiedenmann B, et al. The majority of intestinal IgA+ and IgG+ plasmablasts in the human gut are antigen-specific. J Clin Invest. 2011;121(5):1946–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Farstad IN, Carlsen H, Morton HC, Brandtzaeg P. Immunoglobulin A cell distribution in the human small intestine: phenotypic and functional characteristics. Immunology. 2000;101(3):354–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Di Niro R, Mesin L, Raki M, Zheng NY, Lund-Johansen F, Lundin KE, et al. Rapid generation of rotavirus-specific human monoclonal antibodies from small-intestinal mucosa. J Immunol. 2010;185(9):5377–83.

    Article  PubMed  CAS  Google Scholar 

  30. Stevens RH, Macy E, Morrow C, Saxon A. Characterization of a circulating subpopulation of spontaneous antitetanus toxoid antibody producing B cells following in vivo booster immunization. J Immunol. 1979;122(6):2498–504.

    CAS  PubMed  Google Scholar 

  31. Brieva JA, Roldan E, Rodriguez C, Navas G. Human tonsil, blood and bone marrow in vivo-induced B cells capable of spontaneous and high-rate immunoglobulin secretion in vitro: differences in the requirements for factors and for adherent and bone marrow stromal cells, as well as distinctive adhesion molecule expression. Eur J Immunol. 1994;24(2):362–6.

    Article  CAS  PubMed  Google Scholar 

  32. Munoz JL, Insel RA. In vitro human antibody production to the Haemophilus influenzae type b capsular polysaccharide. J Immunol. 1987;139(6):2026–31.

    CAS  PubMed  Google Scholar 

  33. Sen ML, Garcia-Alonso A, Brieva JA. Human B lymphocytes capable of spontaneous Ig production in short-term cultures: characterization in the circulation and lymphoid tissues. Cell Immunol. 1986;98(1):200–10.

    Article  CAS  PubMed  Google Scholar 

  34. Mesin L, Di Niro R, Thompson KM, Lundin KE, Sollid LM. Long-lived plasma cells from human small intestine biopsies secrete immunoglobulins for many weeks in vitro. J Immunol. 2011;187(6):2867–74.

    Article  CAS  PubMed  Google Scholar 

  35. Landsverk OJ, Snir O, Casado RB, Richter L, Mold JE, Reu P, et al. Antibody-secreting plasma cells persist for decades in human intestine. J Exp Med. 2017;214(2):309–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mei HE, Wirries I, Frolich D, Brisslert M, Giesecke C, Grun JR, et al. A unique population of IgG-expressing plasma cells lacking CD19 is enriched in human bone marrow. Blood. 2015;125(11):1739–48.

    Article  CAS  PubMed  Google Scholar 

  37. Pellat-Deceunynck C, Bataille R. Normal and malignant human plasma cells: proliferation, differentiation, and expansions in relation to CD45 expression. Blood Cells Mol Dis. 2004;32(2):293–301.

    Article  CAS  PubMed  Google Scholar 

  38. Debertin AS, Tschernig T, Tonjes H, Kleemann WJ, Troger HD, Pabst R. Nasal-associated lymphoid tissue (NALT): frequency and localization in young children. Clin Exp Immunol. 2003;134(3):503–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bienenstock J, McDermott MR. Bronchus- and nasal-associated lymphoid tissues. Immunol Rev. 2005;206:22–31.

    Article  PubMed  Google Scholar 

  40. Dolen WK, Spofford B, Selner JC. The hidden tonsils of Waldeyer’s ring. Ann Allergy. 1990;65(4):244–8.

    CAS  PubMed  Google Scholar 

  41. Verbrugghe P, Kujala P, Waelput W, Peters PJ, Cuvelier CA. Clusterin in human gut-associated lymphoid tissue, tonsils, and adenoids: localization to M cells and follicular dendritic cells. Histochem Cell Biol. 2008;129(3):311–20.

    Article  CAS  PubMed  Google Scholar 

  42. Ogasawara N, Kojima T, Go M, Takano K, Kamekura R, Ohkuni T, et al. Epithelial barrier and antigen uptake in lymphoepithelium of human adenoids. Acta Otolaryngol. 2011;131(2):116–23.

    Article  PubMed  Google Scholar 

  43. Brandtzaeg P. Translocation of immunoglobulins across human epithelia: review of the development of a transport model. Acta Histochem Suppl. 1987;34:9–32.

    CAS  PubMed  Google Scholar 

  44. Quiding-Jarbrink M, Granstrom G, Nordstrom I, Holmgren J, Czerkinsky C. Induction of compartmentalized B-cell responses in human tonsils. Infect Immun. 1995;63(3):853–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Brandtzaeg P, Prydz H. Direct evidence for an integrated function of J chain and secretory component in epithelial transport of immunoglobulins. Nature. 1984;311(5981):71–3.

    Article  CAS  PubMed  Google Scholar 

  46. Fukuizumi T, Inoue H, Anzai Y, Tsujisawa T, Uchiyama C. Sheep red blood cell instillation at palatine tonsil effectively induces specific IgA class antibody in saliva in rabbits. Microbiol Immunol. 1995;39(5):351–9.

    Article  CAS  PubMed  Google Scholar 

  47. Moldoveanu Z, Russell MW, Wu HY, Huang WQ, Compans RW, Mestecky J. Compartmentalization within the common mucosal immune system. Adv Exp Med Biol. 1995;371A:97–101.

    Article  CAS  PubMed  Google Scholar 

  48. Hiller AS, Tschernig T, Kleemann WJ, Pabst R. Bronchus-associated lymphoid tissue (BALT) and larynx-associated lymphoid tissue (LALT) are found at different frequencies in children, adolescents and adults. Scand J Immunol. 1998;47(2):159–62.

    Article  CAS  PubMed  Google Scholar 

  49. Pabst R, Gehrke I. Is the bronchus-associated lymphoid tissue (BALT) an integral structure of the lung in normal mammals, including humans? Am J Respir Cell Mol Biol. 1990;3(2):131–5.

    Article  CAS  PubMed  Google Scholar 

  50. Tschernig T, Kleemann WJ, Pabst R. Bronchus-associated lymphoid tissue (BALT) in the lungs of children who had died from sudden infant death syndrome and other causes. Thorax. 1995;50(6):658–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Meuwissen HJ, Hussain M. Bronchus-associated lymphoid tissue in human lung: correlation of hyperplasia with chronic pulmonary disease. Clin Immunol Immunopathol. 1982;23(2):548–61.

    Article  CAS  PubMed  Google Scholar 

  52. Sato A, Chida K, Iwata M, Hayakawa H. Study of bronchus-associated lymphoid tissue in patients with diffuse panbronchiolitis. Am Rev Respir Dis. 1992;146(2):473–8.

    Article  CAS  PubMed  Google Scholar 

  53. Suda T, Chida K, Hayakawa H, Imokawa S, Iwata M, Nakamura H, et al. Development of bronchus-associated lymphoid tissue in chronic hypersensitivity pneumonitis. Chest. 1999;115(2):357–63.

    Article  CAS  PubMed  Google Scholar 

  54. Sato A, Hayakawa H, Uchiyama H, Chida K. Cellular distribution of bronchus-associated lymphoid tissue in rheumatoid arthritis. Am J Respir Crit Care Med. 1996;154(6 Pt 1):1903–7.

    Article  CAS  PubMed  Google Scholar 

  55. Richmond I, Pritchard GE, Ashcroft T, Avery A, Corris PA, Walters EH. Bronchus associated lymphoid tissue (BALT) in human lung: its distribution in smokers and non-smokers. Thorax. 1993;48(11):1130–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Delventhal S, Brandis A, Ostertag H, Pabst R. Low incidence of bronchus-associated lymphoid tissue (BALT) in chronically inflamed human lungs. Virchows Arch B Cell Pathol Incl Mol Pathol. 1992;62(4):271–4.

    Article  CAS  PubMed  Google Scholar 

  57. Tschernig T, Pabst R. Bronchus-associated lymphoid tissue (BALT) is not present in the normal adult lung but in different diseases. Pathobiology. 2000;68(1):1–8.

    Article  CAS  PubMed  Google Scholar 

  58. Jung D, Giallourakis C, Mostoslavsky R, Alt FW. Mechanism and control of V(D)J recombination at the immunoglobulin heavy chain locus. Annu Rev Immunol. 2006;24:541–70.

    Article  CAS  PubMed  Google Scholar 

  59. Chen K, Cerutti A. New insights into the enigma of immunoglobulin D. Immunol Rev. 2010;237(1):160–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Chen K, Xu W, Wilson M, He B, Miller NW, Bengten E, et al. Immunoglobulin D enhances immune surveillance by activating antimicrobial, proinflammatory and B cell-stimulating programs in basophils. Nat Immunol. 2009;10(8):889–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Schlissel MS. Regulating antigen-receptor gene assembly. Nat Rev Immunol. 2003;3(11):890–9.

    Article  CAS  PubMed  Google Scholar 

  62. Muramatsu M, Kinoshita K, Fagarasan S, Yamada S, Shinkai Y, Honjo T. Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell. 2000;102(5):553–63.

    Article  CAS  PubMed  Google Scholar 

  63. Randall TD, Carragher DM, Rangel-Moreno J. Development of secondary lymphoid organs. Annu Rev Immunol. 2008;26:627–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Manis JP, Tian M, Alt FW. Mechanism and control of class-switch recombination. Trends Immunol. 2002;23(1):31–9.

    Article  CAS  PubMed  Google Scholar 

  65. Stavnezer J. Antibody class switching. Adv Immunol. 1996;61:79–146.

    Article  CAS  PubMed  Google Scholar 

  66. Hodge LM, Marinaro M, Jones HP, McGhee JR, Kiyono H, Simecka JW. Immunoglobulin A (IgA) responses and IgE-associated inflammation along the respiratory tract after mucosal but not systemic immunization. Infect Immun. 2001;69(4):2328–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Cerutti A. The regulation of IgA class switching. Nat Rev Immunol. 2008;8(6):421–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hapfelmeier S, Lawson MA, Slack E, Kirundi JK, Stoel M, Heikenwalder M, et al. Reversible microbial colonization of germ-free mice reveals the dynamics of IgA immune responses. Science. 2010;328(5986):1705–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Fernandez MI, Pedron T, Tournebize R, Olivo-Marin JC, Sansonetti PJ, Phalipon A. Anti-inflammatory role for intracellular dimeric immunoglobulin a by neutralization of lipopolysaccharide in epithelial cells. Immunity. 2003;18(6):739–49.

    Article  CAS  PubMed  Google Scholar 

  70. Phalipon A, Corthesy B. Novel functions of the polymeric Ig receptor: well beyond transport of immunoglobulins. Trends Immunol. 2003;24(2):55–8.

    Article  CAS  PubMed  Google Scholar 

  71. Phalipon A, Cardona A, Kraehenbuhl JP, Edelman L, Sansonetti PJ, Corthesy B. Secretory component: a new role in secretory IgA-mediated immune exclusion in vivo. Immunity. 2002;17(1):107–15.

    Article  CAS  PubMed  Google Scholar 

  72. Mantis NJ, Cheung MC, Chintalacharuvu KR, Rey J, Corthesy B, Neutra MR. Selective adherence of IgA to murine Peyer’s patch M cells: evidence for a novel IgA receptor. J Immunol. 2002;169(4):1844–51.

    Article  CAS  PubMed  Google Scholar 

  73. Brandtzaeg P, Baekkevold ES, Morton HC. From B to A the mucosal way. Nat Immunol. 2001;2(12):1093–4.

    Article  CAS  PubMed  Google Scholar 

  74. Pasquier B, Launay P, Kanamaru Y, Moura IC, Pfirsch S, Ruffie C, et al. Identification of FcalphaRI as an inhibitory receptor that controls inflammation: dual role of FcRgamma ITAM. Immunity. 2005;22(1):31–42.

    CAS  PubMed  Google Scholar 

  75. Matysiak-Budnik T, Moura IC, Arcos-Fajardo M, Lebreton C, Menard S, Candalh C, et al. Secretory IgA mediates retrotranscytosis of intact gliadin peptides via the transferrin receptor in celiac disease. J Exp Med. 2008;205(1):143–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Moura IC, Centelles MN, Arcos-Fajardo M, Malheiros DM, Collawn JF, Cooper MD, et al. Identification of the transferrin receptor as a novel immunoglobulin (Ig)A1 receptor and its enhanced expression on mesangial cells in IgA nephropathy. J Exp Med. 2001;194(4):417–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Molaei M, Kaboli A, Fathi AM, Mashayekhi R, Pejhan S, Zali MR. Nodular lymphoid hyperplasia in common variable immunodeficiency syndrome mimicking familial adenomatous polyposis on endoscopy. Indian J Pathol Microbiol. 2009;52(4):530–3.

    Article  PubMed  Google Scholar 

  78. Schaefer PS, Friedman AC. Nodular lymphoid hyperplasia of the small intestine with Burkitt's lymphoma and dysgammaglobulinemia. Gastrointest Radiol. 1981;6(4):325–8.

    Article  CAS  PubMed  Google Scholar 

  79. Macpherson AJ. IgA adaptation to the presence of commensal bacteria in the intestine. Curr Top Microbiol Immunol. 2006;308:117–36.

    CAS  PubMed  Google Scholar 

  80. Breitfeld D, Ohl L, Kremmer E, Ellwart J, Sallusto F, Lipp M, et al. Follicular B helper T cells express CXC chemokine receptor 5, localize to B cell follicles, and support immunoglobulin production. J Exp Med. 2000;192(11):1545–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Boles KS, Vermi W, Facchetti F, Fuchs A, Wilson TJ, Diacovo TG, et al. A novel molecular interaction for the adhesion of follicular CD4 T cells to follicular DC. Eur J Immunol. 2009;39(3):695–703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Reinhardt RL, Liang HE, Locksley RM. Cytokine-secreting follicular T cells shape the antibody repertoire. Nat Immunol. 2009;10(4):385–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Cerutti A, Rescigno M. The biology of intestinal immunoglobulin A responses. Immunity. 2008;28(6):740–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Bergqvist P, Gardby E, Stensson A, Bemark M, Lycke NY. Gut IgA class switch recombination in the absence of CD40 does not occur in the lamina propria and is independent of germinal centers. J Immunol. 2006;177(11):7772–83.

    Article  CAS  PubMed  Google Scholar 

  85. Fagarasan S, Kinoshita K, Muramatsu M, Ikuta K, Honjo T. In situ class switching and differentiation to IgA-producing cells in the gut lamina propria. Nature. 2001;413(6856):639–43.

    Article  CAS  PubMed  Google Scholar 

  86. Shang L, Fukata M, Thirunarayanan N, Martin AP, Arnaboldi P, Maussang D, et al. Toll-like receptor signaling in small intestinal epithelium promotes B-cell recruitment and IgA production in lamina propria. Gastroenterology. 2008;135(2):529–38.

    Article  CAS  PubMed  Google Scholar 

  87. Mora JR, von Andrian UH. Role of retinoic acid in the imprinting of gut-homing IgA-secreting cells. Semin Immunol. 2009;21(1):28–35.

    Article  CAS  PubMed  Google Scholar 

  88. Vinuesa CG, Sanz I, Cook MC. Dysregulation of germinal centres in autoimmune disease. Nat Rev Immunol. 2009;9(12):845–57.

    Article  CAS  PubMed  Google Scholar 

  89. Zucca E, Bertoni F. The spectrum of MALT lymphoma at different sites: biological and therapeutic relevance. Blood. 2016;127(17):2082–92.

    Article  CAS  PubMed  Google Scholar 

  90. Swerdlow SH, Campo E, Pileri SA, Harris NL, Stein H, Siebert R, Advani R, Ghielmini M, Salles GA, Zelenetz AD, Jaffe ES. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood. 2016;127:2375–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Bergman MP, D'Elios MM. Cytotoxic T cells in H. pylori-related gastric autoimmunity and gastric lymphoma. J Biomed Biotechnol. 2010;2010:104918. https://doi.org/10.1155/2010/104918.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Isaacson P, Wright DH. Malignant lymphoma of mucosa-associated lymphoid tissue. A distinctive type of B-cell lymphoma. Cancer. 1983;52(8):1410–6.

    Article  CAS  PubMed  Google Scholar 

  93. Wotherspoon AC, Ortiz-Hidalgo C, Falzon MR, Isaacson PG. Helicobacter pylori-associated gastritis and primary B-cell gastric lymphoma. Lancet. 1991;338(8776):1175–6.

    Article  CAS  PubMed  Google Scholar 

  94. Wotherspoon AC, Doglioni C, Diss TC, Pan L, Moschini A, de Boni M, Isaacson PG. Regression of primary low-grade-B-cell gastric lymphoma of mucosa-associated lymphoid tissue type after eradication of Helicobacter pylori. Lancet. 1993;342(8871):575–7.

    Article  CAS  PubMed  Google Scholar 

  95. Hussell T, Isaacson PG, Crabtree JE, Spencer J. The response of cells from low-grade B-cell gastric lymphomas of mucosa-associated lymphoid tissue to Helicobacter pylori. Lancet. 1993;342(8871):571–4.

    Article  CAS  PubMed  Google Scholar 

  96. Hussell T, Isaacson PG, Crabtree JE, Spencer J. Helicobacter pylori-specific tumour-infiltrating T cells provide contact dependent help for the growth of malignant B cells in low-grade gastric lymphoma of mucosa-associated lymphoid tissue. J Pathol. 1996;178(2):122–7.

    Article  CAS  PubMed  Google Scholar 

  97. Greiner A, Knörr C, Qin Y, Sebald W, Schimpl A, Banchereau J, Müller-Hermelink HK. Low-grade B cell lymphomas of mucosa-associated lymphoid tissue (MALT-type) require CD40-mediated signaling and Th2-type cytokines for in vitro growth and differentiation. Am J Pathol. 1997;150(5):1583–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. D'Elios MM, Amedei A, Del Prete G. Impaired T-cell regulation of B-cell growth in Helicobacter pylori-related gastric low-grade MALT lymphoma. Gastroenterology. 1999;117(5):1105–12.

    Article  CAS  PubMed  Google Scholar 

  99. Munari F, Lonardi S, Cassatella MA, Doglioni C, de Bernard M, D’Elios MM, Vermi W. Tumor-associated macrophages as major source of APRIL in gastric MALT lymphoma. Blood. 2011;117:6612–6.

    Article  CAS  PubMed  Google Scholar 

  100. Munari F, Fassan M, Capitani N, Troilo A, Baldari CT, D’Elios MM, de Bernard M. Cytokine BAFF released by Helicobacter pylori-infected macrophages triggers the Th17 response in human chronic gastritis. J Immunol. 2014;193(11):5584–94.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Milco D’Elios .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Troilo, A., Capitani, N., Patrussi, L., Baldari, C.T., D’Elios, M.M. (2019). Mucosal B Cells. In: D'Elios, M., Rizzi, M. (eds) Humoral Primary Immunodeficiencies. Rare Diseases of the Immune System. Springer, Cham. https://doi.org/10.1007/978-3-319-91785-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91785-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91784-9

  • Online ISBN: 978-3-319-91785-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics