Skip to main content

Quantum Hardware I: Ion Trap Qubits

  • Chapter
  • First Online:
A First Introduction to Quantum Computing and Information
  • 5289 Accesses

Abstract

The DiVincenzo criteria, a list of necessities for the construction of a quantum computer is summarized herein. In reviewing the physics underpinning the trapped ion qubit paradigm, I introduce a rotor model for atoms/ions and demonstrate how single qubit gates, such as the phase and Hadamard gates, are realized in this framework. We use the latter to illustrate how ions respond to laser radiation, the mechanism by which ion qubits are addressed. We show how the Cirac-Zoller mechanism, and its generalization, enables the realization of two-qubit control gates. I provide a survey of trapped ion qubit systems, including optical and hyperfine qubit systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 64.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    More precisely, we require ψ(0) = ψ(2πp) where p is an integer.

  2. 2.

    In the original Cirac-Zoller protocol [3], the CM motion is the medium that negotiates ion-ion interactions.

  3. 3.

    For the sake of simplicity, we assume coupling to only a single vibrational mode.

References

  1. Amir Fruchtman and Iris Chois, Technical Roadmap For Tolerant Quantum Computing, NQIT Report, https://nqit.ox.ac.uk/content/technical-roadmap-fault-tolerant-quantum-computing

  2. F. Schmidt-Kaler, H. Haffner, M. Riebe, S. Gulde, G. P. T. Lancaster, T. Deuschle, C. Becher, C. Roos, J. Eschner, R. Blatt, Nature, 422, 408EP (2003)

    Google Scholar 

  3. J. I. Cirac and P. Zoller, Physical Review Letters 74, 4091 (1995)

    Article  Google Scholar 

  4. David P. DiVincenzo, arXiv:quanr-ph/0002077

    Google Scholar 

  5. Richard P. Feynman, Robert B Leighton, Matthew Sands, Feynman Lectures in Physics, Vol. II Addison-Wesley, 1965

    Google Scholar 

  6. Kurt Gottfried, Tung-Mow Yan, Quantum Mechanics:Fundamentals, (Springer 2003)

    Google Scholar 

  7. Thomas F. Jordan, Linear Operators for Quantum Mechanics, (Dover Publications Inc., Mineola New York 1997)

    Google Scholar 

  8. Michael E. Nielsen and Isaac L. Chuang, Quantum Computation and Quantum Information, Cambridge U. Press, 2011

    MATH  Google Scholar 

  9. D. Leibfried, R. Blatt, C. Monroe and D. Wineland, Review of Modern Physics 75, 281 (2003).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zygelman, B. (2018). Quantum Hardware I: Ion Trap Qubits. In: A First Introduction to Quantum Computing and Information. Springer, Cham. https://doi.org/10.1007/978-3-319-91629-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91629-3_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91628-6

  • Online ISBN: 978-3-319-91629-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics