Skip to main content

Biomechanical Adaptations of Gait in Pregnancy: Implications for Physical Activity and Exercise

  • Chapter
Exercise and Sporting Activity During Pregnancy

Abstract

During pregnancy, women experience several changes in the body’s physiology, morphology, and hormonal system. These changes may affect the balance and body stability and can cause discomfort and pain. The adaptations of the musculoskeletal system due to morphological changes during pregnancy are not fully understood. Few studies clarify the biomechanical changes of gait that occur during pregnancy and in postpartum. The purpose of this chapter is to analyze the available evidence on the biomechanical adaptations of gait that occur throughout pregnancy and in postpartum, specifically with regard to the temporal, spatial, kinematic, and kinetic parameters of gait and balance.

The highlights of this chapter are the following: (1) Pregnancy requires biomechanical adjustments as shown by several publications in the last 20 years. (2) Adaptations due to pregnancy are recognized to provide safety and stability. (3) Most studies performed a temporal, spatial, and kinematic analysis, and few studies performed a kinetic analysis. (4) There is lack of consistency in the results of biomechanical studies due to different methodological approaches. (5) The adaptation strategies to the anatomical and physiological changes throughout pregnancy are still unclear, particularly in a longitudinal perspective and regarding kinetic parameters. (6) The main biomechanical adaptations during pregnancy are gait speed reduction, longer double-support time, and increased step width, and ground reaction forces decrease. (7) There is lack of information regarding the effects of physical activity and exercise, risk of falls, and low back pain on the biomechanical adjustments. (8) Exercise adaptations can be provided in order to increase adherence, safety, and effectiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Coordination is defined by the ability to use the senses, such as sight and hearing, together with body parts in performing tasks smoothly and accurately. In American College of Sports Medicine, Riebe D, Ehrman JK, Liguori G, Magal M. ACSM’s guidelines for exercise testing and prescription. Tenth edition. ed. Philadelphia: Wolters Kluwer; 2018.

  2. 2.

    Balance is defined by the maintenance of equilibrium while stationary or moving. 34. Ibid.

References

  1. Paisley TS, Joy EA, Price RJ Jr. Exercise during pregnancy: a practical approach. Curr Sports Med Rep. 2003;2(6):325–30.

    PubMed  Google Scholar 

  2. ACOG. Your pregnancy and childbirth: month to month. 5th ed. Washington, DC: American College of Obstetricians and Gynecologists; 2010. p. xiv, 467.

    Google Scholar 

  3. Bø K, Artal R, Barakat R, Brown W, Davies GAL, Dooley M, et al. Exercise and pregnancy in recreational and elite athletes: 2016 evidence summary from the IOC expert group meeting, Lausanne. Part 1—exercise in women planning pregnancy and those who are pregnant. Br J Sport Med. 2016;50(10):571.

    Google Scholar 

  4. Oken E, Ning Y, Rifas-Shiman SL, Radesky JS, Rich-Edwards JW, Gillman MW. Associations of physical activity and inactivity before and during pregnancy with glucose tolerance. Obstet Gynecol. 2006;108(5):1200–7.

    PubMed  PubMed Central  Google Scholar 

  5. Foxcroft KF, Callaway LK, Byrne NM, Webster J. Development and validation of a pregnancy symptoms inventory. BMC Pregnancy Childbirth. 2013;13(1):3.

    PubMed  PubMed Central  Google Scholar 

  6. Borg-Stein J, Dugan SA, Gruber J. Musculoskeletal aspects of pregnancy. Am J Phys Med Rehabil. 2005;84(3):180–92.

    PubMed  Google Scholar 

  7. Domingues MR, Barros AJ. Leisure-time physical activity during pregnancy in the 2004 Pelotas Birth Cohort Study. Rev Saude Publica. 2007;41(2):173–80.

    PubMed  Google Scholar 

  8. Pereira MA, Rifas-Shiman SL, Kleinman KP, Rich-Edwards JW, Peterson KE, Gillman MW. Predictors of change in physical activity during and after pregnancy: Project Viva. Am J Prev Med. 2007;32(4):312–9.

    PubMed  PubMed Central  Google Scholar 

  9. Borodulin K, Evenson KR, Monda K, Wen F, Herring AH, Dole N. Physical activity and sleep among pregnant women. Paediatr Perinat Epidemiol. 2010;24(1):45–52.

    PubMed  PubMed Central  Google Scholar 

  10. DiNallo JM, Williams NI, Downs DS, Le Masurier GC. Walking for health in pregnancy. Res Q Exerc Sport. 2008;79(1):28–35.

    PubMed  Google Scholar 

  11. Owe KM, Nystad W, Bø K. Correlates of regular exercise during pregnancy: the Norwegian Mother and Child Cohort Study. Scand J Med Sci Spor. 2009;19(5):637–45.

    CAS  Google Scholar 

  12. Evenson KR, Wen F. National trends in self-reported physical activity and sedentary behaviors among pregnant women: NHANES 1999–2006. Prev Med. 2010;50(3):123–8.

    PubMed  Google Scholar 

  13. Walsh JM, McGowan CA, Mahony R, Foley ME, McAuliffe FM. Low glycaemic index diet in pregnancy to prevent macrosomia (ROLO study): randomised control trial. BMJ. 2012;345:e5605.

    PubMed  PubMed Central  Google Scholar 

  14. Hegaard HK, Damm P, Hedegaard M, Henriksen TB, Ottesen B, Dykes A-K, et al. Sports and leisure time physical activity during pregnancy in nulliparous women. Matern Child Health J. 2011;15(6):806–13.

    PubMed  Google Scholar 

  15. Tinloy J, Chuang CH, Zhu J, Pauli J, Kraschnewski JL, Kjerulff KH. Exercise during pregnancy and risk of late preterm birth, cesarean delivery, and hospitalizations. Womens Health Issues. 2014;24(1):e99–e104.

    PubMed  PubMed Central  Google Scholar 

  16. Liu L, Su H, Yu M. Full-term delivery in a pregnant breast cancer patient. Acta Obstet Gyn Scan. 2011;90(12):1454.

    Google Scholar 

  17. Segal NA, Chu SR. Musculoskeletal anatomic, gait, and balance changes in pregnancy and risk for falls. In: Fitzgerald CM, Segal NA, editors. Musculoskeletal health in pregnancy and postpartum: an evidence-based guide for clinicians. Cham: Springer; 2015. p. 1–18.

    Google Scholar 

  18. Barakat R, Perales M, Garatachea N, Ruiz JR, Lucia A. Exercise during pregnancy. A narrative review asking: what do we know? Br J Sports Med. 2015;49(21):1377–81.

    PubMed  Google Scholar 

  19. Reese ME, Casey E. Hormonal influence on the neuromusculoskeletal system in pregnancy. In: Fitzgerald CM, Segal NA, editors. Musculoskeletal health in pregnancy and postpartum: an evidence-based guide for clinicians. Cham: Springer; 2015. p. 19–39.

    Google Scholar 

  20. Rasmussen KM, Yaktine AL, Institute of Medicine and National Research Council of the National Academies. Weight gain during pregnancy: reexamining the guidelines. Washington, DC: The National Academies Press; 2009.

    Google Scholar 

  21. Wang TW, Apgar BS. Exercise during pregnancy. Am Fam Physician. 1998;57(8):1846–52. 57

    CAS  PubMed  Google Scholar 

  22. Whitcome KK, Shapiro LJ, Lieberman DE. Fetal load and the evolution of lumbar lordosis in bipedal hominins. Nature. 2007;450(7172):1075–U11.

    CAS  PubMed  Google Scholar 

  23. Ostgaard HC, Andersson GB, Schultz AB, Miller JA. Influence of some biomechanical factors on low-back pain in pregnancy. Spine (Phila Pa 1976). 1993;18(1):61–5.

    CAS  Google Scholar 

  24. Gilleard WL, Brown JM. Structure and function of the abdominal muscles in primigravid subjects during pregnancy and the immediate postbirth period. Phys Ther. 1996;76(7):750–62.

    CAS  PubMed  Google Scholar 

  25. Foti T, Davids JR, Bagley A. A biomechanical analysis of gait during pregnancy. J Bone Joint Surg Am. 2000;82A(5):625–32.

    Google Scholar 

  26. Gutke A, Ostgaard HC, Oberg B. Predicting persistent pregnancy-related low back pain. Spine (Phila Pa 1976). 2008;33(12):E386–93.

    Google Scholar 

  27. Wang SM, Dezinno P, Maranets I, Berman MR, Caldwell-Andrews AA, Kain ZN. Low back pain during pregnancy: prevalence, risk factors, and outcomes. Obstet Gynecol. 2004;104(1):65–70.

    PubMed  Google Scholar 

  28. Aldabe D, Milosavljevic S, Bussey MD. Is pregnancy related pelvic girdle pain associated with altered kinematic, kinetic and motor control of the pelvis? A systematic review. Eur Spine J. 2012;21(9):1777–87.

    PubMed  PubMed Central  Google Scholar 

  29. Monteiro M, Gabriel R, Aranha J, Neves e Castro M, Sousa M, Moreira M. Influence of obesity and sarcopenic obesity on plantar pressure of postmenopausal women. Clin Biomech (Bristol, Avon). 2010;25(5):461–7.

    CAS  Google Scholar 

  30. Woo J, Leung J, Kwok T. BMI, body composition, and physical functioning in older adults. Obesity. 2007;15(7):1886–94.

    PubMed  Google Scholar 

  31. Bosch K, Nagel A, Weigend L, Rosenbaum D. From “first” to “last” steps in life – pressure patterns of three generations. Clin Biomech. 2009;24(8):676–81.

    Google Scholar 

  32. Butler EE, Druzin M, Sullivan EV. Gait adaptations in adulthood: pregnancy, aging, and alcoholism. In: Rose J, Gamble JG, editors. Human walking. 3rd ed. Philadelphia, PA: Lippincott Williams & Wilkins; 2006. p. 131–48.

    Google Scholar 

  33. Hong Y, Bartlett R. Routledge handbook of biomechanics and human movement science. London: Routledge; 2010. p. xi, 606.

    Google Scholar 

  34. American College of Sports Medicine, Riebe D, Ehrman JK, Liguori G, Magal M. ACSM’s guidelines for exercise testing and prescription. 10th ed. Philadelphia, PA: Wolters Kluwer; 2018. p. xxx, 472.

    Google Scholar 

  35. Nigg BM, Herzog W. Biomechanics of the musculo-skeletal system. 3rd ed. Hoboken, NJ: John Wiley & Sons; 2007. p. xiii, 672.

    Google Scholar 

  36. Elliott B. Biomechanics: an integral part of sport science and sport medicine. J Sci Med Sport. 1999;2(4):299–310.

    CAS  PubMed  Google Scholar 

  37. Brüggemann G-P, Potthast W, Braunstein B, Niehoff A. Effect of increased mechanical stimuli on foot muscles functional capacity. In: Cavanagh PR, Crago PE, editors. XXth congress of the international society of biomechanics and 29th annual meeting of the American Society of Biomechanics. Cleveland, OH: International Society of Biomechanics; 2005.

    Google Scholar 

  38. Nicholls JA, Grieve DW. Performance of physical tasks in pregnancy. Ergonomics. 1992;35(3):301–11.

    CAS  PubMed  Google Scholar 

  39. Perry J. Gait analysis: normal and pathological function. Thorofare, NJ: SLACK; 1992. p. xxxii, 524.

    Google Scholar 

  40. Forczek W, Staszkiewicz R. Changes of kinematic gait parameters due to pregnancy. Acta Bioeng Biomech. 2012;14(4):113–9.

    PubMed  Google Scholar 

  41. Lymbery JK, Gilleard W. The stance phase of walking during late pregnancy – temporospatial and ground reaction force variables. J Am Podiat Med Assn. 2005;95(3):247–53.

    Google Scholar 

  42. Gilleard WL. Trunk motion and gait characteristics of pregnant women when walking: report of a longitudinal study with a control group. BMC Pregnancy Childbirth. 2013;13:71.

    PubMed  PubMed Central  Google Scholar 

  43. Branco M, Santos-Rocha R, Vieira F, Aguiar L, Veloso AP. Three-dimensional kinematic adaptations of gait throughout pregnancy and postpartum. Acta Bioeng Biomech. 2016;18(2):153–62.

    PubMed  Google Scholar 

  44. Abdel-Aziz YI, Karara HM, Hauck M. Direct linear transformation from comparator coordinates into object space coordinates in close-range photogrammetry*. Photogramm Eng Remote Sens. 2015;81(2):103–7.

    Google Scholar 

  45. Bartlett R. Introduction to sports biomechanics : analysing human movement patterns. 2nd ed. New York, NY: Routledge; 2007.

    Google Scholar 

  46. Richards J. Biomechanics in clinic and research : an interactive teaching and learning course. New York, NY: Churchill Livingstone; 2008. p. xvii, 207.

    Google Scholar 

  47. Robertson DGE, Caldwell GE, Hamill J, Kamen G, Whittlesey SN. Research methods in biomechanics. 2nd ed. Human Kinetics: Champaign, IL, USA; 2014.

    Google Scholar 

  48. Winter DA. Biomechanics and motor control of human movement. 4th ed. Hoboken, NJ: Wiley; 2009. p. xiv, 370.

    Google Scholar 

  49. Nigg BM, Liu W. The effect of muscle stiffness and damping on simulated impact force peaks during running. J Biomech. 1999;32(8):849–56.

    CAS  PubMed  Google Scholar 

  50. Miller D. Ground reaction forces in distance running. In: Cavanagh PR, editor. Biomechanics of distance running [Internet]. Champaign, IL: Human Kinetics; 1990.

    Google Scholar 

  51. Peterson DR, Bronzino JD. Biomechanics : principles and applications. Boca Raton, FL: CRC; 2008.

    Google Scholar 

  52. Whittle M. Gait analysis: an introduction. 4th ed. New York, NY: Butterworth-Heinemann; 2007.

    Google Scholar 

  53. Inman DJ, Soutas-Little R. Engineering mechanics: dynamics. Upper Saddle River, NJ: Prentice Hall; 1998. p. 702.

    Google Scholar 

  54. Nigg BM, MacIntosh BR, Mester J. Biomechanics and biology of movement. Champaign, IL: Human Kinetics; 2000. p. xvii, 465.

    Google Scholar 

  55. Watkins J. Structure and function of the musculoskeletal system. 2nd ed. Champaign, IL: Human Kinetics; 2010. p. viii, 399.

    Google Scholar 

  56. Turner CH, Robling AG. Designing exercise regimens to increase bone strength. Exerc Sport Sci Rev. 2003;31(1):45–50.

    PubMed  Google Scholar 

  57. Witzke KA, Snow CM. Effects of plyometric jump training on bone mass in adolescent girls. Med Sci Sports Exerc. 2000;32(6):1051–7.

    CAS  PubMed  Google Scholar 

  58. Hohmann E, Reaburn P, Tetsworth K, Imhoff A. Plantar pressures during long distance running: an investigation of 10 marathon runners. J Sports Sci Med. 2016;15(2):254–62.

    PubMed  PubMed Central  Google Scholar 

  59. Hennig EM, Milani TL. In-shoe pressure distribution for running in various types of footwear. J Appl Biomech. 1995;11(3):299–310.

    Google Scholar 

  60. Hughes J, Pratt L, Linge K, Clark P, Klenerman L. Reliability of pressure measurements: the EM ED F system. Clin Biomech. 1991;6(1):14–8.

    CAS  Google Scholar 

  61. Santos-Rocha R, Veloso A. Comparative study of plantar pressure during step exercise in different floor conditions. J Appl Biomech. 2007;23(2):162–8.

    PubMed  Google Scholar 

  62. Abdul Razak AH, Zayegh A, Begg RK, Wahab Y. Foot plantar pressure measurement system: a review. Sensors Basel. 2012;12(7):9884.

    PubMed  Google Scholar 

  63. Robinson CC, Balbinot LF, Silva MF, Achaval M, Zaro MA. Plantar pressure distribution patterns of individuals with prediabetes in comparison with healthy individuals and individuals with diabetes. J Diabetes Sci Technol. 2013;7(5):1113–21.

    PubMed  PubMed Central  Google Scholar 

  64. Keijsers NLW, Stolwijk NM, Louwerens JWK, Duysens J. Classification of forefoot pain based on plantar pressure measurements. Clin Biomech. 2013;28(3):350–6.

    CAS  Google Scholar 

  65. Amemiya A, Noguchi H, Oe M, Ohashi Y, Ueki K, Kadowaki T, et al. Elevated plantar pressure in diabetic patients and its relationship with their gait features. Gait Posture. 2014;40(3):408–14.

    PubMed  Google Scholar 

  66. Butterworth PA, Landorf KB, Gilleard W, Urquhart DM, Menz HB. The association between body composition and foot structure and function: a systematic review. Obes Rev. 2014;15(4):348–57.

    CAS  PubMed  Google Scholar 

  67. O'Brien DL, Tyndyk M. Effect of arch type and Body Mass Index on plantar pressure distribution during stance phase of gait. Acta Bioeng Biomech. 2014;16(2):131–5.

    PubMed  Google Scholar 

  68. Mickle KJ, Munro BJ, Lord SR, Menz HB, Steele JR. Foot pain, plantar pressures, and falls in older people: a prospective study. J Am Geriatr Soc. 2010;58(10):1936–40.

    PubMed  Google Scholar 

  69. Fernando M, Crowther R, Lazzarini P, Sangla K, Cunningham M, Buttner P, et al. Biomechanical characteristics of peripheral diabetic neuropathy: a systematic review and meta-analysis of findings from the gait cycle, muscle activity and dynamic barefoot plantar pressure. Clin Biomech (Bristol, Avon). 2013;28(8):831–45.

    Google Scholar 

  70. Justin S, Joshua B, Roger A, Evangelos P, Jack C. Musculoskeletal and activity-related factors associated with plantar heel pain. Foot Ankle Int. 2014;36(1):37–45.

    Google Scholar 

  71. Ramalho F, Santos-Rocha R, Branco M, Moniz-Pereira V, André HI, Veloso AP, et al. Effect of 6-month community-based exercise interventions on gait and functional fitness of an older population: a quasi-experimental study. Clin Interv Aging. 2018;13:595–606.

    PubMed  PubMed Central  Google Scholar 

  72. Branco M, Santos-Rocha R, Vieira F. Biomechanics of gait during pregnancy. Sci World J. 2014;2014:5.

    Google Scholar 

  73. Ribeiro AP, Joao SM, Sacco IC. Static and dynamic biomechanical adaptations of the lower limbs and gait pattern changes during pregnancy. Women’s Health (Lond Engl). 2013;9(1):99–108.

    CAS  Google Scholar 

  74. Anselmo DS, Love E, Tango DN, Robinson L. Musculoskeletal effects of pregnancy on the lower extremity. A literature review. J Am Podiatr Med Assoc. 2017;107(1):60–4.

    PubMed  Google Scholar 

  75. Nyska M, Sofer D, Porat A, Howard CB, Levi A, Meizner I. Planter foot pressures in pregnant women. Israel J Med Sci. 1997;33(2):139–46.

    CAS  PubMed  Google Scholar 

  76. Goldberg J, Besser MP, Selby-Silverstein L. Changes in foot function throughout pregnancy. Obstet Gynecol. 2001;97(4):S39.

    Google Scholar 

  77. Huang T-H, Lin S-C, Ho C-S, Yu C-Y, Chou Y-L. The gait analysis of pregnant women. Biomed Eng Appl Basis Commun. 2002;14(2):4.

    CAS  Google Scholar 

  78. Ribas SI, Guirro ECO. Analysis of plantar pressure and postural balance during different phases of pregnancy. Rev Bras Fisioter. 2007;11(5):391–6.

    Google Scholar 

  79. Carpes F, Griebeler D, Kleinpaul J, Mann L, Mota C. Women able-bodied gait kinematics during and post pregnancy period. Braz J Biomech. 2008;9(16):33–9.

    Google Scholar 

  80. Gaymer C, Whalley H, Achten J, Vatish M, Costa ML. Midfoot plantar pressure significantly increases during late gestation. Foot. 2009;19(2):114–6.

    CAS  Google Scholar 

  81. Karadag-Saygi E, Unlu-Ozkan F, Basgul A. Plantar pressure and foot pain in the last trimester of pregnancy. Foot Ankle Int. 2010;31(2):153–7.

    PubMed  Google Scholar 

  82. Hagan L, Wong CK. Gait in pregnant women: spinal and lower extremity changes from pre- to postpartum. J Women’s Health Phys Ther. 2010;34(2):46–56.

    Google Scholar 

  83. Ribeiro AP, Trombini-Souza F, Sacco IDN, Ruano R, Zugaib M, Joao SMA. Changes in the plantar pressure distribution during gait throughout gestation. J Am Podiat Med Assn. 2011;101(5):415–23.

    Google Scholar 

  84. McCrory JL, Chambers AJ, Daftary A, Redfern MS. Ground reaction forces during gait in pregnant fallers and non-fallers. Gait Posture. 2011;34(4):524–8.

    PubMed  Google Scholar 

  85. Moccellin AS, Driusso P. Adjustments in static and dynamic postural control during pregnancy and their relationship with quality of life: a descriptive study. Fisioterapia. 2012;34(5):196–202.

    Google Scholar 

  86. Branco M, Santos-Rocha R, Aguiar L, Vieira F, Veloso AP. Kinematic analysis of gait in the second and third trimesters of pregnancy. J Pregnancy. 2013;2013:718095.

    PubMed  PubMed Central  Google Scholar 

  87. Aguiar L, Santos-Rocha R, Vieira F, Branco M, Andrade C, Veloso A. Comparison between overweight due to pregnancy and due to added weight to simulate body mass distribution in pregnancy. Gait Posture. 2015;42(4):511–7.

    PubMed  Google Scholar 

  88. Branco M, Santos-Rocha R, Vieira F, Aguiar L, Veloso AP. Three-dimensional kinetic adaptations of gait throughout pregnancy and postpartum. Scientifica (Cairo). 2015;2015(2015):580374.

    Google Scholar 

  89. Yoo H, Shin D, Song C. Changes in the spinal curvature, degree of pain, balance ability, and gait ability according to pregnancy period in pregnant and nonpregnant women. J Phys Ther Sci. 2015;27(1):279–84.

    PubMed  PubMed Central  Google Scholar 

  90. Gimunova M, Kasović M, Zvonar M, Turčínek P, Matković B, Ventruba P, et al. Analysis of ground reaction force in gait during different phases of pregnancy. Kinesiology (Zagreb). 2015;47(2):236–41.

    Google Scholar 

  91. Bertuit J, Leyh C, Rooze M, Feipel V. Plantar pressure during gait in pregnant women. J Am Podiat Med Assn. 2016;106(6):398–405.

    Google Scholar 

  92. Branco M, Santos-Rocha R, Aguiar L, Vieira F, Veloso AP. Kinetic analysis of gait in the second and third trimesters of pregnancy. J Mech Med Biol. 2016;16(4):1–12.

    Google Scholar 

  93. Blaszczyk JW, Opala-Berdzik A, Plewa M. Adaptive changes in spatiotemporal gait characteristics in women during pregnancy. Gait Posture. 2016;43:160–4.

    PubMed  Google Scholar 

  94. Ramachandra P, Kumar P, Kamath A, Maiya AG. Do structural changes of the foot influence plantar pressure patterns during various stages of pregnancy and postpartum? Foot Ankle Spec. 2017;10(6):513–9.

    PubMed  Google Scholar 

  95. Elsayed E, Devreux I, Embaby H, Alsayed A, Alshehri M. Changes in foot plantar pressure in pregnant women. J Back Musculoskelet Rehabil. 2017;30(4):863–7.

    PubMed  Google Scholar 

  96. Sunaga Y, Anan M, Shinkoda K. Biomechanics of rising from a chair and walking in pregnant women. Appl Ergon. 2013;44(5):792–8.

    PubMed  Google Scholar 

  97. Aguiar L, Andrade C, Branco M, Santos-Rocha R, Vieira F, Veloso A. Global optimization method applied to the kinematics of gait in pregnant women. J Mech Med Biol. 2016;16(6):1650084.

    Google Scholar 

  98. Aguiar L, Santos-Rocha R, Branco M, Vieira F, Veloso A. Biomechanical model for kinetic and kinematic description of gait during second trimester of pregnancy to study the effects of biomechanical load on the musculoskeletal system. J Mech Med Biol. 2014;14(1):1450004.

    Google Scholar 

  99. Rodacki CL, Fowler NE, Rodacki AL, Birch K. Stature loss and recovery in pregnant women with and without low back pain. Arch Phys Med Rehabil. 2003;84(4):507–12.

    PubMed  Google Scholar 

  100. Fries EC, Hellebrandt FA. The influence of pregnancy on the location of the center of gravity, postural stability, and body alignment. Am J Obstet Gynecol. 1943;46:374–80.

    Google Scholar 

  101. Calguneri M, Bird HA, Wright V. Changes in joint laxity occurring during pregnancy. Ann Rheum Dis. 1982;41(2):126–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Schauberger CW, Rooney BL, Goldsmith L, Shenton D, Silva PD, Schaper A. Peripheral joint laxity increases in pregnancy but does not correlate with serum relaxin levels. Am J Obstet Gynecol. 1996;174(2):667–71.

    CAS  PubMed  Google Scholar 

  103. Jang J, Hsiao KT, Hsiao-Wecksler ET. Balance (perceived and actual) and preferred stance width during pregnancy. Clin Biomech. 2008;23(4):468–76.

    Google Scholar 

  104. Paisley JE, Mellion MB. Exercise during Pregnancy. Am Fam Physician. 1988;38(5):143–50.

    CAS  PubMed  Google Scholar 

  105. Gilleard W, Crosbie J, Smith R. Effect of pregnancy on trunk range of motion when sitting and standing. Acta Obstet Gyn Scan. 2002;81(11):1011–20.

    Google Scholar 

  106. Vullo VJ, Richardson JK, Hurvitz EA. Hip, knee, and foot pain during pregnancy and the postpartum period. J Fam Pract. 1996;43:63.

    CAS  PubMed  Google Scholar 

  107. Albino MA, Moccellin AS, Firmento Bda S, Driusso P. Gait force propulsion modifications during pregnancy: effects of changes in feet's dimensions. Rev Bras Ginecol. 2011;33(7):164–9.

    Google Scholar 

  108. Inanir A, Cakmak B, Hisim Y, Demirturk F. Evaluation of postural equilibrium and fall risk during pregnancy. Gait Posture. 2014;39(4):1122–5.

    PubMed  Google Scholar 

  109. Gottschall JS, Sheehan RC, Downs DS. Pregnant women exaggerate cautious gait patterns during the transition between level and hill surfaces. J Electromyogr Kinesiol. 2013;23(5):1237–42.

    PubMed  Google Scholar 

  110. McCrory JL, Chambers AJ, Daftary A, Redfern MS. Ground reaction forces during stair locomotion in pregnancy. Gait Posture. 2013;38(4):684–90.

    PubMed  Google Scholar 

  111. Ersal T, McCrory JL, Sienko KH. Theoretical and experimental indicators of falls during pregnancy as assessed by postural perturbations. Gait Posture. 2014;39(1):218–23.

    PubMed  Google Scholar 

  112. McCrory JL, Chambers AJ, Daftary A. Redfern MS. Ground reaction forces during stair locomotion in pregnant fallers and non-fallers. Clin Biomech (Bristol, Avon). 2014;29(2):143–8.

    Google Scholar 

  113. Sawa R, Doi T, Asai T, Watanabe K, Taniguchi T, Ono R. Differences in trunk control between early and late pregnancy during gait. Gait Posture. 2015;42(4):455–9.

    PubMed  Google Scholar 

  114. Wu WH, Meijer OG, Lamoth CJC, Uegaki K, van Dieen JH, Wuisman PIJM, et al. Gait coordination in pregnancy: transverse pelvic and thoracic rotations and their relative phase. Clin Biomech. 2004;19(5):480–8.

    Google Scholar 

  115. A.C.O.G. Exercise during pregnancy and the postpartum period (Reprinted from American College of Obstetricians and Gynecologists.). Clin Obstet Gynecol. 2003;46(2):496–9.

    Google Scholar 

  116. Kluge J, Hall D, Louw Q, Theron G, Grove D. Specific exercises to treat pregnancy-related low back pain in a South African population. Int J Gynaecol Obstet. 2011;113(3):187–91.

    PubMed  Google Scholar 

  117. Shim MJ, Lee YS, Oh HE, Kim JS. Effects of a back-pain-reducing program during pregnancy for Korean women: a non-equivalent control-group pretest-posttest study. Int J Nurs Stud. 2007;44(1):19–28.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rita Santos-Rocha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Cite this chapter

Santos-Rocha, R., Branco, M., Aguiar, L., Vieira, F., Veloso, A.P. (2019). Biomechanical Adaptations of Gait in Pregnancy: Implications for Physical Activity and Exercise. In: Santos-Rocha, R. (eds) Exercise and Sporting Activity During Pregnancy. Springer, Cham. https://doi.org/10.1007/978-3-319-91032-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91032-1_5

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91031-4

  • Online ISBN: 978-3-319-91032-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics