Skip to main content

On the Consistency of Runge–Kutta Methods Up to Order Three Applied to the Optimal Control of Scalar Conservation Laws

  • Conference paper
  • First Online:
Numerical Analysis and Optimization (NAO 2017)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 235))

Included in the following conference series:

  • 949 Accesses

Abstract

Higher-order Runge–Kutta (RK) time discretization methods for the optimal control of scalar conservation laws are analyzed and numerically tested. The hyperbolic nature of the state system introduces specific requirements on discretization schemes such that the discrete adjoint states associated with the control problem converge as well. Moreover, conditions on the RK coefficients are derived that coincide with those characterizing strong stability preserving Runge–Kutta methods. As a consequence, the optimal order for the adjoint state is limited, e.g., to two even in the case where the conservation law is discretized by a third-order method. Finally, numerical tests for controlling Burgers’ equation validate the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adams, R.A., Fournier, J.J.F.: Sobolev Spaces, volume 140 of Pure and Applied Mathematics, 2nd edn. Elsevier/Academic Press, Amsterdam (2003)

    Google Scholar 

  2. Allahverdi, N., Pozo, A., Zuazua, E.: Numerical aspects of large-time optimal control of Burgers equation. ESAIM Math. Model. Numer. Anal. 50(5), 1371–1401 (2016)

    Article  MathSciNet  Google Scholar 

  3. Banda, M.K., Herty, M.: Adjoint IMEX-based schemes for control problems governed by hyperbolic conservation laws. Comput. Optim. Appl. 51(2), 909–930 (2012)

    Article  MathSciNet  Google Scholar 

  4. Bianchini, S.: On the shift differentiability of the flow generated by a hyperbolic system of conservation laws. Discrete Contin. Dynam. Syst. 6(2), 329–350 (2000)

    Article  MathSciNet  Google Scholar 

  5. Bonnans, J.F., Laurent-Varin, J.: Computation of order conditions for symplectic partitioned Runge-Kutta schemes with application to optimal control. Numer. Math. 103(1), 1–10 (2006)

    Article  MathSciNet  Google Scholar 

  6. Bouchut, F., James, F.: One-dimensional transport equations with discontinuous coefficients. Nonlinear Anal. 32(7), 891–933 (1998)

    Article  MathSciNet  Google Scholar 

  7. Bouchut, F., James, F.: Differentiability with respect to initial data for a scalar conservation law. In: Hyperbolic problems: theory, numerics, applications, Vol. I (Zürich, 1998), volume 129 of Internat. Ser. Numer. Math., pp. 113–118. Birkhäuser, Basel (1999)

    Google Scholar 

  8. Bressan, A.: Hyperbolic systems of conservation laws, volume 20 of Oxford Lecture Series in Mathematics and its Applications. Oxford University Press, Oxford (2000) (The one-dimensional Cauchy problem)

    Google Scholar 

  9. Bressan, A., Guerra, G.: Shift-differentiability of the flow generated by a conservation law. Discrete Contin. Dynam. Syst. 3(1), 35–58 (1997)

    MathSciNet  MATH  Google Scholar 

  10. Bressan, A., Marson, A.: A maximum principle for optimally controlled systems of conservation laws. Rend. Sem. Mat. Univ. Padova 94, 79–94 (1995)

    MathSciNet  MATH  Google Scholar 

  11. Bressan, A., Marson, A.: A variational calculus for discontinuous solutions of systems of conservation laws. Comm. Partial Differ. Equ. 20(9–10), 1491–1552 (1995)

    MathSciNet  MATH  Google Scholar 

  12. Bressan, A., Shen, W.: Optimality conditions for solutions to hyperbolic balance laws. In: Control methods in PDE-dynamical systems, volume 426 of Contemp. Math., pp 129–152. Amer. Math. Soc., Providence, RI (2007)

    Google Scholar 

  13. Cesari, L.: Optimization - Theory and Applications, volume 17 of Applications of Mathematics. Springer, New York (1983) (Problems with ordinary differential equations)

    Google Scholar 

  14. Dunford, N., Schwartz, J.T.: Linear Operators. Part I. Wiley Classics Library. Wiley, New York (1988). General theory, With the assistance of William G. Bade and Robert G. Bartle, Reprint of the 1958 original, A Wiley-Interscience Publication

    Google Scholar 

  15. Giles, M., Ulbrich, S.: Convergence of linearized and adjoint approximations for discontinuous solutions of conservation laws. Part 1: linearized approximations and linearized output functionals. SIAM J. Numer. Anal. 48(3), 882–904 (2010)

    Article  MathSciNet  Google Scholar 

  16. Giles, M., Ulbrich, S.: Convergence of linearized and adjoint approximations for discontinuous solutions of conservation laws. Part 2: adjoint approximations and extensions. SIAM J. Numer. Anal. 48(3), 905–921 (2010)

    Article  MathSciNet  Google Scholar 

  17. Giles, M.B.: Discrete Adjoint Approximations with Shocks. Hyperbolic Problems: Theory. Numerics, Applications, pp. 185–194. Springer, Berlin (2003)

    Book  Google Scholar 

  18. Gottlieb, S., Shu, C.-W.: Total variation diminishing Runge-Kutta schemes. Math. Comp. 67(221), 73–85 (1998)

    Article  MathSciNet  Google Scholar 

  19. Gottlieb, S., Shu, C.-W., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43, (1):89–112 (electronic) (2001)

    Article  MathSciNet  Google Scholar 

  20. Hager, W.W.: Runge-Kutta methods in optimal control and the transformed adjoint system. Numer. Math. 87(2), 247–282 (2000)

    Article  MathSciNet  Google Scholar 

  21. Hajian, S., Hintermüller, M., Ulbrich, S.: Total variation diminishing schemes in optimal control of scalar conservation laws (2017). WIAS-Preprint https://doi.org/10.20347/WIAS.PREPRINT.2383 Accepted in IMA J Numerical Analysis, drx073, https://doi.org/10.1093/imanum/drx073

  22. Herty, M., Piccoli, B.: A numerical method for the computation of tangent vectors to \(2\times 2\) hyperbolic systems of conservation laws. Commun. Math. Sci. 14(3), 683–704 (2016)

    Article  MathSciNet  Google Scholar 

  23. Hinze, M., Pinnau, R., Ulbrich, M., Ulbrich, S.: Optimization with PDE constraints. Mathematical Modelling: Theory and Applications, vol. 23. Springer, New York (2009)

    MATH  Google Scholar 

  24. Ketcheson, D.I.: Highly efficient strong stability-preserving Runge-Kutta methods with low-storage implementations. SIAM J. Sci. Comput. 30(4), 2113–2136 (2008)

    Article  MathSciNet  Google Scholar 

  25. Kraaijevanger, J.F.B.M.: Contractivity of Runge-Kutta methods. BIT 31(3), 482–528 (1991)

    Article  MathSciNet  Google Scholar 

  26. Kružkov, S.N.: First order quasilinear equations with several independent variables. Mat. Sb. (N.S.) 81(123), 228–255 (1970)

    MathSciNet  Google Scholar 

  27. LeVeque, R.J.: Numerical Methods for Conservation Laws. Lectures in Mathematics ETH Zürich, 2nd edn. Birkhäuser, Basel (1992)

    Book  Google Scholar 

  28. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer Series in Operations Research and Financial Engineering, 2nd edn. Springer, New York (2006)

    Google Scholar 

  29. Pfaff, S., Ulbrich, S.: Optimal boundary control of nonlinear hyperbolic conservation laws with switched boundary data. SIAM J. Control Optim. 53(3), 1250–1277 (2015)

    Article  MathSciNet  Google Scholar 

  30. Ruuth, S.J., Spiteri, R.J.: Two barriers on strong-stability-preserving time discretization methods. In: Proceedings of the Fifth International Conference on Spectral and High Order Methods (ICOSAHOM-01) (Uppsala), volume 17, pp. 211–220 (2002)

    Google Scholar 

  31. Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics, 3rd edn. Springer, Berlin (2009). A Practical Introduction

    Book  Google Scholar 

  32. Ulbrich, S.: Optimal control of nonlinear hyperbolic conservation laws with source terms. Technische Universität München (2001)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the German Research Foundation (DFG) within project B02 of CRC TRR 154.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Hintermüller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hintermüller, M., Strogies, N. (2018). On the Consistency of Runge–Kutta Methods Up to Order Three Applied to the Optimal Control of Scalar Conservation Laws. In: Al-Baali, M., Grandinetti, L., Purnama, A. (eds) Numerical Analysis and Optimization. NAO 2017. Springer Proceedings in Mathematics & Statistics, vol 235. Springer, Cham. https://doi.org/10.1007/978-3-319-90026-1_6

Download citation

Publish with us

Policies and ethics