Skip to main content

Optimal Power Flow Analysis in Power Dispatch for Distribution Networks

  • Conference paper
  • First Online:
Numerical Analysis and Optimization (NAO 2017)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 235))

Included in the following conference series:

Abstract

This paper presents two applications of Optimal Power Flow analysis for active and reactive power redispatch in medium-voltage distribution networks and shows how this tool can be used to efficiently manage the selection and operation of network resources as well as the definition of a market interface with the transmission network. The description of the frameworks is complemented by the analysis of a case study for the optimal selection and operation of available devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ackermann, T., Andersson, G., Söder, L.: Distributed generation: a definition. Electr. Power Syst. Res. 57(3), 195–204 (2001)

    Article  Google Scholar 

  2. Akorede, M.F., Hizam, H., Pouresmaeil, E.: Distributed energy resources and benefits to the environment. Renew. Sustain. Energy Rev. 14(2), 724–734 (2010)

    Article  Google Scholar 

  3. Barker, P.P., De Mello, R.W.: Determining the impact of distributed generation on power systems. I. Radial distribution systems. In: Power Engineering Society Summer Meeting, Seattle, WA, vol. 3, pp. 1645–1656 (2000)

    Google Scholar 

  4. Bosisio, A., Moneta, D., Vespucci, M.T., Zigrino, S.: A procedure for the optimal management of medium-voltage AC networks with distributed generation and storage devices. Procedia—Social Behavioral Sc. 108, 164–186 (2013)

    Article  Google Scholar 

  5. Buijs, P., et al.: Transmission investment problems in europe: going beyond standard solutions. Energy Policy 39(3), 1794–1801 (2011)

    Article  Google Scholar 

  6. Brown, R.E.: Impact of smart grid on distribution system design. Power and Energy Society General Meeting—IEEE Conversion and Delivery of Electrical Energy in the 21st Century. Pittsburg, IEEE, pp. 1–4 (2008)

    Google Scholar 

  7. European Commission, 2030 Energy Strategy, available on https://ec.europa.eu/energy/en/topics/energy-strategy/2030-energy-strategy

  8. Garzillo, A., Innorta, M., Ricci, M.: The problem of the active and reactive optimum power dispatching solved by utilizing a primal-dual interior point method. Int. J. Electr. Power Energy Syst. 20(6), 427–434 (1998)

    Article  Google Scholar 

  9. Garzillo, A., Innorta, M., Ricci, M.: The flexibility of interior point based optimal power flow algorithms facing critical network situations. Int. J. Electr. Power Energy Syst. 21(8), 579–584 (1999)

    Article  Google Scholar 

  10. H2020: SmartNet EU project Deliverable 1.3, Basic Models for TSO-DSO coordination, available on http://smartnet-project.eu/wp-content/uploads/2016/12/D1.3_20161202_V1.0.pdf (2016)

  11. Herzog A., Lipman T., Edwards J.: Renewable energy: a viable choice. Environment (December), 1–34 (2001)

    Google Scholar 

  12. Hinrichs, D., Conbere, S., Lobash, M.: Taking control of power supplies. In: Building Operating Management (July), http://www.findarticles.com/p/articles/mi_qa3922/is_200207/ai_n9110155 (2002)

  13. Huneault, M., Galiana, F.: A survey of the optimal power flow literature. IEEE Trans. Power Syst. 6(2), 762–770 (1991)

    Article  Google Scholar 

  14. International Energy Agency: Distributed generation in liberalized electricity markets. International Energy Agency, Paris (2002)

    Google Scholar 

  15. International Energy Agency: World Energy Outlook 2008. International Energy Agency, Paris (2008)

    Google Scholar 

  16. Mehrotra S.: On the implementation of a (primal-dual) interior point method, Tech. Report 90-03, Department of Industrial Engineering and Management Sciences, Northwestern University, Evanston, IL (1990)

    Google Scholar 

  17. Momoh, J.A., El-Hawary, M., Adapa, R.: A review of selected optimal power flow literature to 1993. Part I: Nonlinear and quadratic programming approaches. IEEE Trans. Power Syst. 14(1), 96–104 (1999)

    Article  Google Scholar 

  18. Momoh, J.A., El-Hawary, M., Adapa, R.: A review of selected optimal power flow literature to 1993 Part II: Newton, linear programming and interior point methods. IEEE Trans. Power Syst. 14(1), 105–111 (1999)

    Article  Google Scholar 

  19. Moneta, D., Gelmini, A., Carlini, C., Belotti, M.: Storage units: possible improvements for voltage control of MV distribution networks. In: Proceedings 17th Power Systems Computation Conference (PSCC) (2011)

    Google Scholar 

  20. Lin, J.: Power outage hits industrial park hard. Taipei Times (April 11), p. 10 (2004)

    Google Scholar 

  21. Owens, B.: The rise of distributed power. http://www.eenews.net/assets/2014/02/25/document_gw_02.pdf (2014)

  22. Rossi, M., Moneta, D., ViganĂ², G., Vespucci, M.T., Pisciella, P.: Fast estimation of equivalent capability for active distribution networks. In: 24th Conference on Electricity Networks, Glasgow, 12–15, June 2017

    Google Scholar 

  23. Silberglitt, R., Ettedgui, E., Hove, A.: Strengthening the Grid: Effect of High-Temperature Superconducting Power Technologies on Reliability, Power Transfer Capacity, and Energy Use. http://www.rand.org/publications/MR/MR1531/ (2002)

  24. Viral, R., Khatod, D.: Optimal planning of distributed generation systems in distribution system: a review. Renew. Sustain. Energy Rev. 16, 5146–5165 (2012)

    Article  Google Scholar 

  25. Vita, V., Alimardan, T., Ekonomou, L.: The impact of distributed generation in the distribution networks’ voltage profile and energy losses. In: IEEE European Modelling Symposium (EMS), Madrid, pp. 260–265 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Pisciella .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pisciella, P., Vespucci, M.T., ViganĂ², G., Rossi, M., Moneta, D. (2018). Optimal Power Flow Analysis in Power Dispatch for Distribution Networks. In: Al-Baali, M., Grandinetti, L., Purnama, A. (eds) Numerical Analysis and Optimization. NAO 2017. Springer Proceedings in Mathematics & Statistics, vol 235. Springer, Cham. https://doi.org/10.1007/978-3-319-90026-1_11

Download citation

Publish with us

Policies and ethics