Skip to main content

Robust Constrained Concept Factorization

  • Chapter
  • First Online:
Computational Intelligence for Pattern Recognition

Part of the book series: Studies in Computational Intelligence ((SCI,volume 777))

Abstract

Accurately representing data is a fundamental problem in many pattern recognition and computational intelligence applications. In this chapter, a robust constrained concept factorization (RCCF) method is proposed. RCCF allows the extraction of important information, while simultaneously utilizing prior information when it is available, and is noise invariant. To guarantee data samples share the identical cluster and obtain similar representation in the new laten space, the proposed method uses a constraint matrix that is embodied into the rudimentary concept factorization model. The \(L_{2,1}\)-norm is used for both the reconstruction function and the regularization, which allows the proposed model to be insensitive to outliers. Furthermore, the \(L_{2,1}\)-norm regularization assists in the selection of useful information with joint sparsity. An elegant and efficient iterative updating scheme is also introduced with convergence and correctness analysis. Experimental results on commonly used databases in pattern recognition and computational intelligence demonstrate the effectiveness of RCCF.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.face-rec.org/databases/.

  2. 2.

    http://www.face-rec.org/databases/.

  3. 3.

    http://yann.lecun.com/exdb/mnist/.

References

  1. Y. Bengio, A. Courville, P. Vincent, Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013)

    Article  Google Scholar 

  2. M. Tepper, G. Sapiro, Compressed nonnegative matrix factorization is fast and accurate. IEEE Trans. Signal Process. 64(9), 2269–2283 (2016)

    Article  MathSciNet  Google Scholar 

  3. Z. Ma, A.E. Teschendorff, A. Leijon, Y. Qiao, H. Zhang, J. Guo, Variational bayesian matrix factorization for bounded support data. IEEE Trans. Pattern Anal. Mach. Intell. 37(4), 876–889 (2015)

    Article  Google Scholar 

  4. Z. Yang, Y. Xiang, Y. Rong, K. Xie, A convex geometry-based blind source separation method for separating nonnegative sources. IEEE Trans. Neural Netw. Learn. Syst. 26(8), 1635–1644 (2015)

    Article  MathSciNet  Google Scholar 

  5. I. Domanov, L.D. Lathauwer, Generic uniqueness of a structured matrix factorization and applications in blind source separation. IEEE J. Sel. Top. Signal Process. 10(4), 701–711 (2016)

    Article  Google Scholar 

  6. X. Fu, W.K. Ma, K. Huang, N.D. Sidiropoulos, Blind separation of quasi-stationary sources: exploiting convex geometry in covariance domain. IEEE Trans. Signal Process. 63(9), 2306–2320 (2015)

    Article  MathSciNet  Google Scholar 

  7. Y. Xu, B. Zhang, Z. Zhong, Multiple representations and sparse representation for image classification. Pattern Recognit. Lett. 68, 9–14 (2015)

    Article  Google Scholar 

  8. H. Zhang, J. Yang, J. Xie, J. Qian, B. Zhang, Weighted sparse coding regularized nonconvex matrix regression for robust face recognition. Inf. Sci. 394, 1–17 (2017)

    MathSciNet  Google Scholar 

  9. W. Jia, B. Zhang, J. Lu, Y. Zhu, Y. Zhao, W. Zuo, H. Ling, Palmprint recognition based on complete direction representation. IEEE Trans. Image Process. (2017)

    Google Scholar 

  10. Y. Xiao, Z. Zhu, Y. Zhao, Y. Wei, S. Wei, X. Li, Topographic nmf for data representation. IEEE Trans. Cybern. 44(10), 1762–1771 (2014)

    Article  Google Scholar 

  11. L. Luo, L. Chen, J. Yang, J. Qian, B. Zhang, Tree-structured nuclear norm approximation with applications to robust face recognition. IEEE Trans. Image Process. 25(12), 5757–5767 (2016)

    Article  MathSciNet  Google Scholar 

  12. R.O. Duda, P.E. Hart, D.G. Stork, Pattern Classification (Wiley, New York, 2012)

    Google Scholar 

  13. I. Jolliffe, Principal Component Analysis (Wiley Online Library, Hoboken, 2002)

    Google Scholar 

  14. R. Gray, Vector quantization. IEEE Assp Mag. 1(2), 4–29 (1984)

    Article  Google Scholar 

  15. D.D. Lee, H.S. Seung, Learning the parts of objects by non-negative matrix factorization. Nature 401(6755), 788–791 (1999)

    Article  Google Scholar 

  16. Z. Yang, Y. Zhang, W. Yan, Y. Xiang, S. Xie, A fast non-smooth nonnegative matrix factorization for learning sparse representation. IEEE Access 4, 5161–5168 (2016)

    Article  Google Scholar 

  17. X. Zhang, L. Zong, X. Liu, J. Luo, Constrained clustering with nonnegative matrix factorization. IEEE Trans. Neural Netw. Learn. Syst. 27(7), 1514–1526 (2016)

    Article  MathSciNet  Google Scholar 

  18. Z. Yang, Y. Xiang, K. Xie, Y. Lai, Adaptive method for nonsmooth nonnegative matrix factorization. IEEE Trans. Neural Netw. Learn. Syst. 28(4), 948–960 (2017)

    Article  Google Scholar 

  19. W. Xu, Y. Gong, Document clustering by concept factorization, in Proceedings of the 27th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (ACM, 2004), pp. 202–209

    Google Scholar 

  20. D. Cai, X. He, J. Han, Locally consistent concept factorization for document clustering. IEEE Trans. Knowl. Data Eng. 23(6), 902–913 (2011)

    Article  Google Scholar 

  21. H. Liu, Z. Yang, J. Yang, Z. Wu, X. Li, Local coordinate concept factorization for image representation. IEEE Trans. Neural Netw. Learn. Syst. 25(6), 1071–1082 (2014)

    Article  Google Scholar 

  22. W. Yan, B. Zhang, S. Ma, Z. Yang, A novel regularized concept factorization for document clustering. Knowl.-Based Syst. (2017)

    Google Scholar 

  23. S.E. Palmer, Hierarchical structure in perceptual representation. Cogn. Psychol. 9(4), 441–474 (1977)

    Article  Google Scholar 

  24. N.K. Logothetis, D.L. Sheinberg, Visual object recognition. Annu. Rev. Neurosci. 19(1), 577–621 (1996)

    Article  Google Scholar 

  25. P.O. Hoyer, Non-negative matrix factorization with sparseness constraints. J. Mach. Learn. Res. 5, 1457–1469 (2004)

    MathSciNet  MATH  Google Scholar 

  26. R. Peharz, F. Pernkopf, Sparse nonnegative matrix factorization with 0-constraints. Neurocomputing 80, 38–46 (2012)

    Article  Google Scholar 

  27. H. Liu, G. Yang, Z. Wu, D. Cai, Constrained concept factorization for image representation. IEEE Trans. Cybern. 44(7), 1214–1224 (2014)

    Article  Google Scholar 

  28. H. Liu, Z. Wu, D. Cai, T.S. Huang, Constrained nonnegative matrix factorization for image representation. IEEE Trans. Pattern Anal. Mach. Intell. 34(7), 1299–1311 (2012)

    Article  Google Scholar 

  29. D. Wang, X. Gao, X. Wang, Semi-supervised nonnegative matrix factorization via constraint propagation. IEEE Trans. Cybern. 46(1), 233–244 (2016)

    Article  Google Scholar 

  30. C. Ding, D. Zhou, X. He, H. Zha, R1-PCA: rotational invariant L1-norm principal component analysis for robust subspace factorization, in Proceedings of the 23rd International Conference on Machine Learning (ACM, 2006), pp. 281–288

    Google Scholar 

  31. D.D. Lee, H.S. Seung, Algorithms for non-negative matrix factorization, in Advances in Neural Information Processing Systems (2001), pp. 556–562

    Google Scholar 

  32. C.H.Q. Ding, T. Li, M.I. Jordan, Convex and semi-nonnegative matrix factorizations. IEEE Trans. Pattern Anal. Mach. Intell. 32(1), 45–55 (2010)

    Article  Google Scholar 

  33. D. Kong, C. Ding, H. Huang, Robust nonnegative matrix factorization using L21-norm, in Proceedings of the 20th ACM International Conference on Information and Knowledge Management (ACM, 2011), pp. 673–682

    Google Scholar 

  34. D. Cai, X. He, J. Han, T.S. Huang, Graph regularized nonnegative matrix factorization for data representation. IEEE Trans. Pattern Anal. Mach. Intell. 33(8), 1548–1560 (2011)

    Article  Google Scholar 

  35. D. Cai, X. He, J. Han, Document clustering using locality preserving indexing. IEEE Trans. Knowl. Data Eng. 17(12), 1624–1637 (2005)

    Article  Google Scholar 

  36. L. Lovász, M.D. Plummer, Matching Theory, vol. 367 (American Mathematical Society, Providence, 2009)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the Science and Technology Development Fund (FDCT) of Macao SAR (124/2014/A3) and the National Natural Science Foundation of China (61602540).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bob Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yan, W., Zhang, B. (2018). Robust Constrained Concept Factorization. In: Pedrycz, W., Chen, SM. (eds) Computational Intelligence for Pattern Recognition. Studies in Computational Intelligence, vol 777. Springer, Cham. https://doi.org/10.1007/978-3-319-89629-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-89629-8_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-89628-1

  • Online ISBN: 978-3-319-89629-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics