Skip to main content

Learning Label Dependency and Label Preference Relations in Graded Multi-label Classification

  • Chapter
  • First Online:
Computational Intelligence for Pattern Recognition

Part of the book series: Studies in Computational Intelligence ((SCI,volume 777))

  • 1402 Accesses

Abstract

Graded multi-label classification (GMLC) is a supervised machine learning task where the association between each data and a label has a membership degree from an ordinal scale of membership degrees: for example, an odorous molecule can be associated to the graded subset of odors {strong musc, moderate animal} based on the ordinal scale of odor intensity: {very weak, weak, moderate, strong, very strong}, and a movie can be associated to the graded subset of labels {action \(\star \star \star \star \), suspense \(\star \star \), humour \(\star \star \)} based on the ordinal scale of one-to-five star rating. The aim in GMLC is to build a predictive model called classifier, in order to predict the graded set of labels based on descriptive attributes of data. For example, predicting the graded set of molecule odors based on molecular properties such as the molecular structure and weight. Or predicting the graded set of genres for a movie based on the synopsis and the main actors. An interesting challenge in GMLC is learning label relations and exploiting them to enhance the prediction performance of classifiers. A label relation can be a dependency relation: for example, movies containing a lot of ‘action’ often contains also some ‘suspense’. Another type of label relations is preference relations: for example, it is preferred to associate a movie containing a lot of movements to the label ‘action’ than to the label ‘humour’. The limitation of existing approaches is that they can either learn dependency relations or preference relations. This work reviews state of the art GMLC approaches, and introduces a new GMLC approach that can learn both dependency and preference label relations. Experiments on real datasets show that the new approach outperforms baseline approaches according the used prediction evaluation measures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E. Frank, M. Hall, A simple approach to ordinal classification, in Proceedings of the 12th European Conference on Machine Learning, ser. EMCL ’01 (Springer, London, UK, 2001), pp. 145–156

    Chapter  Google Scholar 

  2. Z.-H. Zhou, M.-L. Zhang, Multi-label Learning (Springer, Boston, MA, 2017), pp. 875–881

    Chapter  Google Scholar 

  3. F. Herrera, F. Charte, A.J. Rivera, M.J. del Jesus, Multilabel Classification Problem Analysis, Metrics and Techniques. Multilabel Classification (2016), pp. 17–31

    Google Scholar 

  4. W. Cheng, K. Dembczynski, E. Hllermeier, Graded multilabel classification: the ordinal case, in Proceedings of LWA2010 - Workshop-Woche: Lernen, Wissen & Adaptivitaet ed. by M. Atzmller, D. Benz, A. Hotho, G. Stumme (Kassel, Germany, 2010)

    Google Scholar 

  5. C. Brinker, E.L. Menca, J. Frnkranz, Graded multilabel classification by pairwise comparisons, in 2014 IEEE International Conference on Data Mining (2014), pp. 731–736

    Google Scholar 

  6. M.-L. Zhang and K. Zhang, “Multi-label learning by exploiting label dependency,” in Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ser. KDD ’10. New York, NY, USA: ACM, 2010, pp. 999–1008

    Google Scholar 

  7. R. Al-Otaibi, M. Kull, P. Flach, Declaratively Capturing Local Label Correlations with Multi-Label Trees. Frontiers in Artificial Intelligence and Applications (IOS Press, Netherlands, 2016), pp. 1467–1475

    Google Scholar 

  8. G. Tsoumakas, I. Katakis, Multi-label classification: an overview. Int. J. Data Wareh. Min. 2007, 1–13 (2007)

    Google Scholar 

  9. J.R. Quinlan, C4.5: Programs for Machine Learning (Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1993)

    Google Scholar 

  10. B.E. Boser, I.M. Guyon, V.N. Vapnik, A training algorithm for optimal margin classifiers, in Proceedings of the Fifth Annual Workshop on Computational Learning Theory, COLT ’92 (ACM, New York, NY, USA, 1992), pp. 144–152

    Google Scholar 

  11. J. Friedman, Another approach to polychotomous classification, Department of Statistics, Stanford University, Technical Report (1996)

    Google Scholar 

  12. T. Hastie, R. Tibshirani, Classification by pairwise coupling, in Proceedings of the 1997 Conference on Advances in Neural Information Processing Systems 10, NIPS ’97 (MIT Press, Cambridge, MA, USA, 1998), pp. 507–513

    Article  MathSciNet  Google Scholar 

  13. E. Loza Mencía, F. Janssen, Stacking label features for learning multilabel rules, in Discovery Science - 17th International Conference on DS 2014, Bled, Slovenia, 8-10 Oct 2014, Proceedings ed. by S. Deroski, P. Panov, D. Kocev, and L. Todorovski. Lecture Notes in Computer Science, vol. 8777 (Springer, 2014), pp. 192–203

    Google Scholar 

  14. E. Loza Mencía, F. Janssen, Learning rules for multi-label classification: a stacking and a separate-and-conquer approach. Mach. Learn. 105(1), 77–126 (2016)

    Article  MathSciNet  Google Scholar 

  15. Z. Sun, Z. Guo, M. Jiang, X. Wang, C. Liu, Research and Application of Fast Multi-label SVM Classification Algorithm Using Approximate Extreme Points (Springer International Publishing, Cham, 2016), pp. 39–52

    Google Scholar 

  16. S. Agrawal, J. Agrawal, S. Kaur, S. Sharma, A comparative study of fuzzy pso and fuzzy svd-based rbf neural network for multi-label classification. Neural Computing and Applications, pp. 1–12, 2016

    Article  Google Scholar 

  17. X. Wang, S. An, H. Shi, Q. Hu, Fuzzy Rough Decision Trees for Multi-label Classification (Springer International Publishing, Cham, 2015), pp. 207–217

    Google Scholar 

  18. J. Read, A Pruned Problem Transformation Method for Multi-label classification, in Proceedings of 2008 New Zealand Computer Science Research Student Conference (NZCSRS 2008) (2008), pp. 143–150

    Google Scholar 

  19. J. Read, B. Pfahringer, G. Holmes, E. Frank, Classifier chains for multi-label classification. Mach. Learn. 85(3), 333–359 (2011)

    Article  MathSciNet  Google Scholar 

  20. E. Montas, J.R. Quevedo, J.J. del Coz, Aggregating independent and dependent models to learn multi-label classifiers. in ECML/PKDD (2) ed. by D. Gunopulos, T. Hofmann, D. Malerba, M. Vazirgiannis. Lecture Notes in Computer Science, vol. 6912 (Springer, 2011), pp. 484–500

    Google Scholar 

  21. K. Laghmari, C. Marsala, M. Ramdani, Graded multi-label classification: Compromise between handling label relations and limiting error propagation, in 11th International Conference on Intelligent Systems: Theories and Applications (SITA) (2016), pp. 1–6

    Google Scholar 

  22. E. Hüllermeier, J. Fürnkranz, W. Cheng, K. Brinker, Label ranking by learning pairwise preferences. Artif. Intell. 172(1617), 1897–1916 (2008)

    Article  MathSciNet  Google Scholar 

  23. J. Fürnkranz, E. Hüllermeier, E. Loza Mencía, K. Brinker, Multilabel classification via calibrated label ranking. Mach. Learn. 73(2), 133–153 (2008)

    Article  Google Scholar 

  24. C. Brinker, E.L. Menca, J. Frnkranz, Graded multilabel classification by pairwise comparisons, in ICDM ed. by R. Kumar, H. Toivonen, J. Pei, J.Z. Huang, X. Wu (IEEE Computer Society, 2014), pp. 731–736

    Google Scholar 

  25. K. Laghmari, C. Marsala, M. Ramdani, Classification multi-labels graduee apprendre les relations entre les labels ou limiter la propagation d erreur, Revue des Nouvelles Technologies de l’Information, vol. Extraction et Gestion des Connaissances, RNTI-E-33 (2017), pp. 381–386

    Google Scholar 

  26. G. Tsoumakas, I. Katakis, I. Vlahavas, Mining multi-label data, in Data Mining and Knowledge Discovery Handbook (2010), pp. 667–685

    Chapter  Google Scholar 

  27. S. Destercke, Multilabel Prediction with Probability Sets: The Hamming Loss Case (Springer International Publishing, Cham, 2014), pp. 496–505

    Google Scholar 

  28. S. Godbole, S. Sarawagi, Discriminative methods for multi-labeled classification, in Advances in Knowledge Discovery and Data Mining: 8th Pacific-Asia Conference, PAKDD 2004, Sydney, Australia, May 26-28, 2004. Proceedings (Springer, Berlin, Heidelberg, 2004), pp. 22–30

    Chapter  Google Scholar 

  29. I. Pillai, G. Fumera, F. Roli, Designing multi-label classifiers that maximize f measures: State of the art. Pattern Recognit. 61, 394–404 (2017)

    Article  Google Scholar 

  30. M. Kubat, R. Holte, S. Matwin, Learning When Negative Examples Abound ( Springer, Berlin, Heidelberg, 1997), pp. 146–153

    Chapter  Google Scholar 

  31. K. Trohidis, G. Tsoumakas, G. Kalliris, I.P. Vlahavas, Multi-label classification of music into emotions, in ISMIR ed. by J.P. Bello, E. Chew, D. Turnbull (2008), pp. 325–330

    Google Scholar 

  32. M.R. Boutell, J. Luo, X. Shen, C.M. Brown, Learning multi-label scene classification. Pattern Recognit. 37(9), 1757–1771 (2004)

    Article  Google Scholar 

  33. A. Elisseeff, J. Weston, A kernel method for multi-labelled classification, in In Advances in Neural Information Processing Systems 14 (MIT Press, 2001), pp. 681–687

    Google Scholar 

  34. A.E. Abele-Brehm, M. Stief, Die prognose des berufserfolgs von hochschulabsolventinnen und -absolventen: Befunde zur ersten und zweiten erhebung der erlanger l’angsschnittstudie Bela-E[predicting career success of university graduates: Findings of the first and second wave of the erlangen longitudinal study Bela-E]. Zeitschrift fr Arbeits- und Organisationspsychologie A&O 48(1), 4–16 (2004)

    Article  Google Scholar 

  35. S. Arctander, Perfume and Flavor Chemicals: (aroma Chemicals), ser (Aroma Chemicals. Allured Publishing Corporation, Perfume and Flavor Chemicals, 1969)

    Google Scholar 

  36. A. Mauri, V. Consonni, M. Pavan, R. Todeschini, Dragon software: an easy approach to molecular descriptor calculations. MATCH/Commun. Math. Comput. Chem. 56, 237–248 (2006)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khalil Laghmari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Laghmari, K., Marsala, C., Ramdani, M. (2018). Learning Label Dependency and Label Preference Relations in Graded Multi-label Classification. In: Pedrycz, W., Chen, SM. (eds) Computational Intelligence for Pattern Recognition. Studies in Computational Intelligence, vol 777. Springer, Cham. https://doi.org/10.1007/978-3-319-89629-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-89629-8_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-89628-1

  • Online ISBN: 978-3-319-89629-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics