Skip to main content

Deep Neural Networks for Structured Data

  • Chapter
  • First Online:
Computational Intelligence for Pattern Recognition

Part of the book series: Studies in Computational Intelligence ((SCI,volume 777))

Abstract

Learning machines for pattern recognition, such as neural networks or support vector machines, are usually conceived to process real–valued vectors with predefined dimensionality even if, in many real–world applications, relevant information is inherently organized into entities and relationships between them. Instead, Graph Neural Networks (GNNs) can directly process structured data, guaranteeing universal approximation of many practically useful functions on graphs. GNNs, that do not strictly meet the definition of deep architectures, are based on the unfolding mechanism during learning, that, in practice, yields networks that have the same depth of the data structures they process. However, GNNs may be hindered by the long–term dependency problem, i.e. the difficulty in taking into account information coming from peripheral nodes within graphs — due to the local nature of the procedures for updating the state and the weights. To overcome this limitation, GNNs may be cascaded to form layered architectures, called Layered GNNs (LGNNs). Each GNN in the cascade is trained based on the original graph “enriched” with the information computed by the previous layer, to implement a sort of incremental learning framework, able to take into account progressively further information. The applicability of LGNNs will be illustrated both with respect to a classical problem in graph–theory and to pattern recognition problems in bioinformatics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H. Bunke, K. Riesen, Recent advances in graph-based pattern recognition with applications in document analysis. Pattern Recognit. 44(5), 1057–1067 (2011)

    Article  Google Scholar 

  2. M. Bianchini, F. Scarselli, Artificial neural networks for processing graphs with applications to image understanding: a survey, in Multimedia Techniques for Device and Ambient Intelligence, ed. by E. Damiani, J. Jeong (Springer, Berlin, 2009), pp. 179–199

    Chapter  Google Scholar 

  3. C. Mooney, G. Pollastri, Beyond the twilight zone: automated prediction of structural properties of proteins by recursive neural networks and remote homology information. Proteins 77(1), 181–190 (2009)

    Article  Google Scholar 

  4. A. Srinivasan, S. Muggleton, R.D. King, M.J.E. Sternberg, Mutagenesis: ILP experiments in a non–determinate biological domain, In Proceedings of the 4th International Workshop on Inductive Logic Programming, Gesellschaft für Mathematik und Datenverarbeitung MBH, pp. 217–232, 1994

    Google Scholar 

  5. J. Cheng, M.J. Sweredoski, P. Baldi, Accurate prediction of protein disordered regions by mining protein structure data. Data Min. Knowl. Discov. 11(3), 213–222 (2005)

    Article  MathSciNet  Google Scholar 

  6. M. Bianchini, M. Maggini, L. Sarti, Recursive neural networks and their applications to image processing, in Advances in Imaging and Electron Physics, vol. 140, ed. by P.W. Hawkes, (Elsevier – Academic Press, 2006), pp. 1–60

    Google Scholar 

  7. M. Bianchini, M. Maggini, L. Sarti, F. Scarselli, Recursive neural networks for processing graphs with labelled edges: theory and applications. Neural Netw. 18, 1040–1050 (2005)

    Article  Google Scholar 

  8. V. Di Massa, G. Monfardini, L. Sarti, F. Scarselli, M. Maggini, M. Gori, A comparison between recursive neural networks and graph neural networks, in Proceedings of the IEEE International Joint Conference on Neural Networks, pp. 778–785, 2006

    Google Scholar 

  9. A.-C. Tsoi, M. Hagenbuchner, R. Chau, V. Lee, Unsupervised and supervised learning of graph domains, Studies in Computational Intelligence - Innovations in Neural Information Paradigms and Applications, vol. 247 (Springer, Berlin, 2009), pp. 43–65

    Chapter  Google Scholar 

  10. P. Frasconi, M. Gori, A. Sperduti, A general framework for adaptive processing of data structures. IEEE Trans. Neural Netw. 9(5), 768–786 (1998)

    Article  Google Scholar 

  11. F. Scarselli, M. Gori, A.-C. Tsoi, M. Hagenbuchner, G. Monfardini, The graph neural network model. IEEE Trans. Neural Netw. 20(1), 61–80 (2009)

    Article  Google Scholar 

  12. W. Uwents, G. Monfardini, H. Blockeel, M. Gori, F. Scarselli, Neural networks for relational learning: an experimental comparison. Mach. Learn. 82(3), 315–349 (2011)

    Article  MathSciNet  Google Scholar 

  13. G. Monfardini, V. Di Massa, F. Scarselli, M. Gori, Graph neural networks for object localization, in Proceedings of ECAI 2006 (IOS Press, 2006), pp. 665–669

    Google Scholar 

  14. L. Di Noi, M. Hagenbuchner, F. Scarselli, A.-H. Tsoi, Web spam detection by probability mapping graph–SOMs and graph neural networks, in International Conference on Artificial Neural Networks (Springer, Berlin, 2010), pp. 372–381

    Google Scholar 

  15. D. Muratore, M. Hagenbuchner, F. Scarselli, A.-H. Tsoi, Sentence extraction by graph neural networks, in International Conference on Artificial Neural Networks (Springer, 2010), pp. 237–246

    Chapter  Google Scholar 

  16. R. Chau, A.-H. Tsoi, M. Hagenbuchner, V. Lee, A conceptlink graph for text structure mining, in Proceedings of the Thirty–Second Australasian Conference on Computer Science, vol. 91, (Australian Computer Society, Inc., 2009), pp. 141–150

    Google Scholar 

  17. Y. Bengio, P. Simard, P. Frasconi, Learning long-term dependencies with gradient descent is difficult. IEEE Trans. Neural Netw. 5(2), 157–166 (1994)

    Article  Google Scholar 

  18. M. Bianchini, F. Scarselli, On the complexity of neural network classifiers: a comparison between shallow and deep architectures. IEEE Trans. Neural Netw. Learn. Syst. 25(8), 1553–1565 (2014)

    Article  Google Scholar 

  19. G.E. Hinton, S. Osindero, Y. Teh, A fast learning algorithm for deep belief nets. Neural Comput. 2, 1527–1554 (2006)

    Article  MathSciNet  Google Scholar 

  20. M. Bianchini, M. Maggini, Supervised neural network models for processing graphs, in Handbook on Neural Information Processing (Springer, Berlin, 2013), pp. 67–96

    Google Scholar 

  21. M.A. Khamsi, An Introduction to Metric Spaces and Fixed Point Theory (Wiley, New York, 2001)

    Book  Google Scholar 

  22. F.J. Pineda, Recurrent back-propagation and the dynamical approach to adaptive neural computation. Neural Comput. 1, 161–172 (1989)

    Article  Google Scholar 

  23. N. Bandinelli, M. Bianchini, F. Scarselli, Learning long–term dependencies using layered graph neural networks, in The 2010 International Joint Conference on Neural Networks (IJCNN), pp. 1–8, July 2010

    Google Scholar 

  24. D.R. Wood, An algorithm for finding a maximum clique in a graph. Oper. Res. Lett. 21(5), 211–217 (1997)

    Article  MathSciNet  Google Scholar 

  25. C. Hofbauer, H. Lohninger, A. Aszó, SURFCOMP: a novel graph-based approach to molecular surface comparison. J. Chem. Inf. Comput. Sci. 44(3), 837–847 (2004)

    Article  Google Scholar 

  26. J. Konc, D. Janežič, A branch and bound algorithm for matching protein structures, in Adaptive and Natural Computing Algorithms, pp. 399–406, 2007

    Google Scholar 

  27. Q. Ouyang, P.D. Kaplan, S. Liu, A. Libchaber, DNA solution of the maximal clique problem. Science 278(5337), 446–449 (1997)

    Article  Google Scholar 

  28. A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R. Stata, A. Tomkins, J. Wiener, Graph structure in the web. Comput. Netw. 33(1), 309–320 (2000)

    Article  Google Scholar 

  29. G. Palla, I. Derényi, I. Farkas, T. Vicsek, Uncovering the overlapping community structure of complex networks in nature and society. Nature 435, 814–818 (2005)

    Article  Google Scholar 

  30. F. Scarselli, M. Gori, A.-C. Tsoi, M. Hagenbuchner, G. Monfardini, Computational capabilities of graph neural networks. IEEE Trans. Neural Netw. 20(1), 81–102 (2009)

    Article  Google Scholar 

  31. B.A. Kunz, K. Ramachandran, E.J. Vonarx, DNA sequence analysis of spontaneous mutagenesis in saccharomyces cerevisiae. Genetics 148(4), 1491–1505 (1998)

    Google Scholar 

  32. G. Pollastri, A. Mclysaght, Porter: a new, accurate server for protein secondary structure prediction. Bioinformatics 21(8), 1719–1720 (2005)

    Article  Google Scholar 

  33. M. Riedmiller, H. Braun, A direct algorithm method for faster backpropagation learning: the RPROP algorithm, in Proceedings of the International Conference on Neural Networks, vol. 1, (Portland (USA), 1993), pp. 586–591

    Google Scholar 

  34. W. Uwents, G. Monfardini, H. Blockeel, F. Scarselli, M Gori, Two connectionist models for graph processing: an experimental comparison on relational data, In European Conference on Machine Learning, pp. 211–220, 2006

    Google Scholar 

  35. M. Weisel, E. Proschak, G. Schneider, Pocket picker: analysis of ligand binding-sites with shape descriptors. Chem. Cent. J. 1, 1–7 (2007)

    Article  Google Scholar 

  36. A.T.R. Laurie, R.M. Jackson, Q-SiteFinder: an energy-based method for the prediction of protein-ligand binding sites. Bioinformatics 21(9), 1908–1916 (2005)

    Article  Google Scholar 

  37. B. Huang, M.M. Schroeder, LIGSITE csc: predicting ligand binding sites using the Connolly surface and degree of conservation. BMC Struct. Biol. 6(1), 19 (2006)

    Google Scholar 

  38. S. Butenko, W.E. Wilhelm, Clique-detection models in computational biochemistry and genomics. Eur. J. Oper. Res. 173(1), 1–17 (2006)

    Article  MathSciNet  Google Scholar 

  39. C. Yan, Y. Wang, A graph kernel method for DNA-binding site prediction. BMC Syst. Biol. 8(4), S10 (2014)

    Article  Google Scholar 

  40. N. Kurumatani, H. Monji, T. Ohkawa, Binding site extraction by similar subgraphs mining from protein molecular surfaces, in IEEE 12th International Conference on Bioinformatics & Bioengineering (BIBE), 2012 (IEEE, New York, 2012), pp. 255–259

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monica Bianchini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bianchini, M., Dimitri, G.M., Maggini, M., Scarselli, F. (2018). Deep Neural Networks for Structured Data. In: Pedrycz, W., Chen, SM. (eds) Computational Intelligence for Pattern Recognition. Studies in Computational Intelligence, vol 777. Springer, Cham. https://doi.org/10.1007/978-3-319-89629-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-89629-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-89628-1

  • Online ISBN: 978-3-319-89629-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics