Skip to main content

Mechanically Assisted Electrochemical Degradation of Alumina-TiC Composites

  • Chapter
  • First Online:
Orthopedic Biomaterials
  • 1143 Accesses

Abstract

Alumina-TiC composite material is a tough ceramic composite with excellent hardness, wear resistance and oxidation resistance in dry and high-temperature conditions. In aqueous conditions, however, it is likely to be electrochemically active facilitating charge transfer processes due to the conductive nature of TiC. For application as an orthopedic biomaterial, it is crucial to assess the electrochemical behavior of this composite, especially under a combined mechanical and electrochemical environment. In this study, we examined the mechanically assisted electrochemical performance of alumina-TiC composite in an aqueous environment. The spontaneous electrochemical response to brushing abrasion was measured. Changes in the magnitude of electrochemical current with abrasion test conditions and possible causal relationship to the alteration in surface morphology were examined. Results showed that the alumina matrix underwent abrasive wear with evidence of microploughing and grain boundary damage. Chemical analysis revealed TiO2 formation in the abraded region, indicating oxidation of the conductive TiC domain. Furthermore, wear debris from alumina abrasion appeared to affect reaction kinetics at the composite-electrolyte interface. From this work, we established that the composite undergoes abrasion assisted electrochemical degradation even in gentle abrasive conditions and the severity of degradation is related to temperature and conditions of test environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jazrawi LM, Kummer FJ, Di Cesare PE. Hard bearing surfaces in total hip arthroplasty. Am J Orthop (Belle Mead NJ). 1998;27(4):283–92.

    CAS  Google Scholar 

  2. Bard AJ, Faulkner LR, Leddy J, Zoski CG. Electrochemical methods: fundamentals and applications, vol. 2. New York: Wiley; 1980. p. 44–82.

    Google Scholar 

  3. Gilbert JL, Mali SA. Medical implant corrosion: electrochemistry at metallic biomaterial surfaces. In: Degradation of implant materials. New York: Springer; 2012. p. 1–28.

    Google Scholar 

  4. Royhman D, Patel M, Runa MJ, et al. Fretting-corrosion behavior in hip implant modular junctions: the influence of friction energy and pH variation. J Mech Behav Biomed Mater. 2016;62:570–87.

    Article  CAS  PubMed  Google Scholar 

  5. Swaminathan V, Gilbert JL. Fretting corrosion of CoCrMo and Ti6Al4V interfaces. Biomaterials. 2012;33(22):5487–503.

    Article  CAS  PubMed  Google Scholar 

  6. Cooper HJ, Della Valle CJ, Berger RA, et al. Corrosion at the head-neck taper as a cause for adverse local tissue reactions after total hip arthroplasty. J Bone Joint Surg. 2012;94(18):1655–61.

    Article  PubMed  Google Scholar 

  7. Cooper HJ, Urban RM, Wixson RL, et al. Adverse local tissue reaction arising from corrosion at the femoral neck-body junction in a dual-taper stem with a cobalt-chromium modular neck. J Bone Joint Surg Am. 2013;95(10):865–72.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Begin-Colin S, Mocellin A, Stebut JV, et al. Alumina and alumina–TiN wear resistance in a simulated biological environment. J Mater Sci. 1998;33(11):2837–43.

    Article  CAS  Google Scholar 

  9. Lashneva VV, Kryuchkov YN, Sokhan SV. Bioceramics based on aluminum oxide. Glas Ceram. 1998;55(11):357–9.

    Article  CAS  Google Scholar 

  10. Garino J, Rahaman MN, Bal BS. The reliability of modern alumina bearings in total hip arthroplasty. Semin Arthroplasty. 2006;17(3):113–9.

    Article  Google Scholar 

  11. Skinner HB. Ceramic bearing surfaces. Clin Orthop Relat Res. 1999;369:83–91.

    Article  Google Scholar 

  12. Willmann G. Ceramic femoral head retrieval data. Clin Orthop Relat Res. 2000;379:22–8.

    Article  Google Scholar 

  13. Boutin P, Christel P, Dorlot JM, et al. The use of dense alumina–alumina ceramic combination in total hip replacement. J Biomed Mater Res. 1988;22(12):1203–32.

    Article  CAS  PubMed  Google Scholar 

  14. Nine MJ, Choudhury D, Hee AC, et al. Wear debris characterization and corresponding biological response: artificial hip and knee joints. Materials. 2014;7(2):980–1016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mittelmeier H, Heisel J. Sixteen-years' experience with ceramic hip prostheses. Clin Orthop Relat Res. 1992;282:64–72.

    Google Scholar 

  16. Jianxin D, Zeliang D, Jun Z, et al. Unlubricated friction and wear behaviors of various alumina-based ceramic composites against cemented carbide. Ceram Int. 2006;32(5):499–507.

    Article  CAS  Google Scholar 

  17. Fei YH, Huang CZ, Liu HL, et al. Mechanical properties of Al 2 O 3–TiC–TiN ceramic tool materials. Ceram Int. 2014;40(7):10205–9.

    Article  CAS  Google Scholar 

  18. Guu YY, Lin JF, Ai CF. The tribological characteristics of titanium nitride, titanium carbonitride and titanium carbide coatings. Thin Solid Films. 1997;302(1–2):193–200.

    Article  CAS  Google Scholar 

  19. Lee SW, Morillo C, Lira-Olivares J, et al. Tribological and microstructural analysis of Al2O3/TiO 2 nanocomposites to use in the femoral head of hip replacement. Wear. 2003;255(7):1040–4.

    Article  CAS  Google Scholar 

  20. Cai KF, McLachlan DS, Axen N, et al. Preparation, microstructures and properties of Al2O3–TiC composites. Ceram Int. 2002;28(2):217–22.

    Article  CAS  Google Scholar 

  21. Brama M, Rhodes N, Hunt J, et al. Effect of titanium carbide coating on the osseointegration response in vitro and in vivo. Biomaterials. 2007;28(4):595–608.

    Article  CAS  PubMed  Google Scholar 

  22. Shackelford JF, Han YH, Kim S, Kwon SH. CRC materials science and engineering handbook. Boca Raton, FL: CRC; 2016.

    Google Scholar 

  23. Sahoo P, Davim JP. Tribology of ceramics and ceramic matrix composites. In: Tribology for scientists and engineers. New York: Springer; 2013. p. 211–31.

    Chapter  Google Scholar 

  24. Oda K, Yoshio T. Hydrothermal corrosion of alumina ceramics. J Am Ceram Soc. 1997;80(12):3233–6.

    Article  CAS  Google Scholar 

  25. Lauwers B, Kruth JP, Liu W, Eeraerts W, Schacht B, Bleys P. Investigation of material removal mechanisms in EDM of composite ceramic materials. J Mater Process Technol. 2004;149(1):347–52.

    Article  CAS  Google Scholar 

  26. Landfried R, Kern F, Burger W, Leonhardt W, Gadow R. Development of electrical discharge Machinable ZTA ceramics with 24 vol% of TiC, TiN, TiCN, TiB2 and WC as electrically conductive phase. Int J Appl Ceram Technol. 2013;10(3):509–18.

    Article  CAS  Google Scholar 

  27. Avasarala B, Haldar P. Electrochemical oxidation behavior of titanium nitride based electrocatalysts under PEM fuel cell conditions. Electrochim Acta. 2010;55(28):9024–34.

    Article  CAS  Google Scholar 

  28. Meijs S, Fjorback M, Jensen C, Sørensen S, Rechendorff K, Rijkhoff NJ. Electrochemical properties of titanium nitride nerve stimulation electrodes: an in vitro and in vivo study. Front Neurosci. 2015;9:268.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Zhang L, Koka RV. A study on the oxidation and carbon diffusion of TiC in alumina–titanium carbide ceramics using XPS and Raman spectroscopy. Mater Chem Phys. 1998;57(1):23–32.

    Article  CAS  Google Scholar 

  30. Cowling RD, Hintermann HE. The corrosion of titanium carbide. J Electrochem Soc. 1970;117(11):1447–9.

    Article  CAS  Google Scholar 

  31. Cowling RD, Hintermann HE. The anodic oxidation of titanium carbide. J Electrochem Soc. 1971;118(12):1912–6.

    Article  CAS  Google Scholar 

  32. Kiran V, Srinivasu K, Sampath S. Morphology dependent oxygen reduction activity of titanium carbide: bulk vs. nanowires. Phys Chem Chem Phys. 2013;15(22):8744–51.

    Article  CAS  PubMed  Google Scholar 

  33. Ramirez AG, Kelly MA, Strom BD, et al. Carbon-coated sliders and their effect on carbon oxidation wear. Tribol Trans. 1996;39(3):710–4.

    Article  CAS  Google Scholar 

  34. Contu F, Elsener B, Böhni H. Corrosion behaviour of CoCrMo implant alloy during fretting in bovine serum. Corros Sci. 2005;47(8):1863–75.

    Article  CAS  Google Scholar 

  35. Barril S, Debaud N, Mischler S, et al. A tribo-electrochemical apparatus for in vitro investigation of fretting–corrosion of metallic implant materials. Wear. 2002;252(9–10):744–54.

    Article  CAS  Google Scholar 

  36. Bratu F, Benea L, Celis JP. Tribocorrosion behaviour of Ni–SiC composite coatings under lubricated conditions. Surf Coat Technol. 2007;201(16):6940–6.

    Article  CAS  Google Scholar 

  37. Jianxin D, Tongkun C, Zeliang D, et al. Tribological behaviors of hot-pressed Al 2 O 3/TiC ceramic composites with the additions of CaF 2 solid lubricants. J Eur Ceram Soc. 2006;26(8):1317–23.

    Article  CAS  Google Scholar 

  38. Jahanmir S. Wear transitions and tribochemical reactions in ceramics. Proc Inst Mech Eng J J Eng Tribol. 2002;216(6):371–85.

    Article  CAS  Google Scholar 

  39. Yingjie L, Xingui B, Keqiang C. A study on the formation of wear debris during abrasion. Tribol Int. 1985;18(2):107–11.

    Article  Google Scholar 

  40. Lee GY, Dharan CKH, Ritchie RO. A physically-based abrasive wear model for composite materials. Wear. 2002;252(3):322–31.

    Article  CAS  Google Scholar 

  41. Gamry Instruments. Basics of electrochemical impedance spectroscopy. Gamry Instruments: 20Primer; 2006. p. 202006.

    Google Scholar 

  42. Gee MG. The formation of aluminium hydroxide in the sliding wear of alumina. Wear. 1992;153(1):201–27.

    Article  CAS  Google Scholar 

  43. Gates RS, Hsu M, Klaus EE. Tribochemical mechanism of alumina with water. Tribol Trans. 1989;32(3):357–63.

    Article  CAS  Google Scholar 

  44. Gates JD. Two-body and three-body abrasion: a critical discussion. Wear. 1998;214(1):139–46.

    Article  CAS  Google Scholar 

  45. Azzi M, Szpunar JA. Tribo-electrochemical technique for studying tribocorrosion -behavior of biomaterials. Biomol Eng. 2007;24(5):443–6.

    Article  CAS  PubMed  Google Scholar 

  46. Vitry V, Sens A, Kanta AF, et al. Wear and corrosion resistance of heat treated and as-plated duplex NiP/NiB coatings on 2024 aluminum alloys. Surf Coat Technol. 2012;206(16):3421–7.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the support from the Department of Bioengineering and the Institute for Biological Interfaces of Engineering at Clemson University. Funding support for this work is provided by a storage media company through a research agreement with Clemson University under contract number 146422 and by the Institute for Biological Interfaces of Engineering at Clemson University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guigen Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Maharaja, H.U., Zhang, G. (2018). Mechanically Assisted Electrochemical Degradation of Alumina-TiC Composites. In: Li, B., Webster, T. (eds) Orthopedic Biomaterials . Springer, Cham. https://doi.org/10.1007/978-3-319-89542-0_8

Download citation

Publish with us

Policies and ethics