Skip to main content

Relation to Complex Dynamics

  • Chapter
  • First Online:
Rotation Sets and Complex Dynamics

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2214))

  • 700 Accesses

Abstract

In this chapter we outline how rotation sets occur in the dynamical study of complex polynomial maps. Special attention is paid to the relation with the dynamics of complex quadratic and cubic polynomials. This link provides a geometric realization of rotation sets under m d , whose abstract theory was developed in the previous chapters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 19.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 29.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    It is conjectured that ∂Δ is a Jordan curve containing a critical point for almost every rotation number θ. This has been proved in the quadratic case in [25].

  2. 2.

    The limb decomposition hypothesis is believed to hold for almost every rotation number θ (and at least for θ of bounded type), but so far this has been rigorously verified only for d = 2 where the whole Julia set is known to be locally connected; see [23] and [25].

  3. 3.

    In [30] the cubics are given in the normal form

    $$\displaystyle \begin{aligned} z \mapsto e^{2\pi i \theta} z \Big( 1- \frac{1}{2} \big( 1+\frac{1}{c} \big) z + \frac{1}{3c} z^2 \Big) \qquad c \in {\mathbb C}^*, \end{aligned}$$

    with marked critical points at 1 and c. The punctured c-plane is a double-cover of the a 2-plane, branched at c = ±1. In this normalization, Γ(θ) appears as a Jordan curve passing through these branch points, and is invariant under the involution c↦1∕c.

  4. 4.

    Each parameter ± a n is the “root” of a capture component in which the (n + 1)-st iterate of one critical point hits the Siegel disk. We will not be using this fact in our presentation.

References

  1. A. Blokh, J. Malaugh, J. Mayer, L. Oversteegen, D. Parris, Rotational subsets of the circle under z d. Topol. Appl. 153, 1540–1570 (2006)

    Article  MathSciNet  Google Scholar 

  2. A. Blokh, L. Oversteegen, V. Timorin, Slices of the parameter space of cubic polynomials. arXiv:1609.02240

    Google Scholar 

  3. X. Buff, A. Chéritat, A new proof of a conjecture of Yoccoz. Ann. Inst. Fourier 61, 319–350 (2011)

    Article  MathSciNet  Google Scholar 

  4. X. Buff, C. Henriksen, Julia sets in the parameter spaces. Commun. Math. Phys. 220, 333–375 (2001)

    Article  MathSciNet  Google Scholar 

  5. A. Douady, Disques de Siegel at aneaux de Herman, Seminar Bourbaki. Astérisque 152–153, 151–172 (1987)

    Google Scholar 

  6. L. Goldberg, J. Milnor, Fixed points of polynomial maps II: fixed point portraits. Ann. Sci. École Norm. Sup. 26, 51–98 (1993)

    Article  MathSciNet  Google Scholar 

  7. J. Kiwi, Wandering orbit portraits. Trans. Am. Math. Soc. 354, 1473–1485 (2002)

    Article  MathSciNet  Google Scholar 

  8. R. Mañé, P. Sad, D. Sullivan, On the dynamics of rational maps. Ann. Sci. École Norm. Sup. 16, 193–217 (1983)

    Article  MathSciNet  Google Scholar 

  9. C. McMullen, Complex Dynamics and Renormalization. Annals of Mathematics Studies, vol. 135 (Princeton University Press, Princeton, 1994)

    Google Scholar 

  10. J. Milnor, Periodic orbits, external rays and the Mandelbrot set, in Geometrie Complexe et Systemes Dynamiques. Astérisque, vol. 261 (American Mathematical Society, Paris, 2000), pp. 277–333

    Google Scholar 

  11. J. Milnor, Dynamics in One Complex Variable. Annals of Mathematics Studies, vol. 160, 3rd edn. (Princeton University Press, Princeton, 2006)

    Google Scholar 

  12. C. Petersen, Local connectivity of some Julia sets containing a circle with an irrational rotation. Acta Math. 177, 163–224 (1996)

    Article  MathSciNet  Google Scholar 

  13. C. Petersen, S. Zakeri, On the Julia set of a typical quadratic polynomial with a Siegel disk. Ann. Math. 159, 1–52 (2004)

    Article  MathSciNet  Google Scholar 

  14. C. Petersen, S. Zakeri, External rays and disconnected Julia sets. Manuscript (2018, to appear)

    Google Scholar 

  15. S. Zakeri, Dynamics of cubic Siegel polynomials. Commun. Math. Phys. 206, 185–233 (1999)

    Article  MathSciNet  Google Scholar 

  16. S. Zakeri, Biaccessibility in quadratic Julia sets. Ergodic Theory Dyn. Syst. 20, 1859–1883 (2000)

    Article  MathSciNet  Google Scholar 

  17. S. Zakeri, Conformal fitness and uniformization of holomorphically moving disks. Trans. Am. Math. Soc. 368, 1023–1049 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zakeri, S. (2018). Relation to Complex Dynamics. In: Rotation Sets and Complex Dynamics. Lecture Notes in Mathematics, vol 2214. Springer, Cham. https://doi.org/10.1007/978-3-319-78810-4_5

Download citation

Publish with us

Policies and ethics