Skip to main content

Part of the book series: Geotechnologies and the Environment ((GEOTECH,volume 21))

Abstract

Geomorphology is the study of the landforms, their processes, form and sediments at the surface of the earth. Geomorphological maps are very effective tools in management of land resources and help in various types of resources inventory, mapping and management. Running water, wind, glaciers, karst and sea waves are powerful erosional and depositional agents, which are acting over a long period of time and produce systematic changes leading to sequential development of landforms. The traditional mapping approaches emphasized qualitative interpretation, as frequently dictated by the inherent limitations associated with fieldwork, paucity of digital data and lack of prior field/geographic experience and domain knowledge. Recent advances in remote sensing, geographic information system (GIS) and availability of satellite-based digital elevation models and developments in numerical modelling capabilities enhance the ability to understand the surface processes more clearly in the field of geomorphology. Geomorphological mapping and analysis of various processes using advance tools like remote sensing and GIS act as preliminary tools for land resources inventory, mapping and management, geomorphological and geological risk management, as well as providing baseline data for other applied sectors of environmental research such as landscape ecology, soil science, hydrology and forestry, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahnert F (1998) Introduction to geomorphology. Arnold, London

    Google Scholar 

  • Anonymous (1976) Engineering geological maps. A Guide to their interpretation UNESCO Press, Paris

    Google Scholar 

  • Anonymous (2009) Manual for national geomorphological and lineament mapping on 1:50,000 scale. Geological Survey of India and Indian Space Research Organisation, Government of India. National Remote Sensing Centre, Hyderabad 116 p

    Google Scholar 

  • Baker VR (1986) Introduction: regional landforms analysis. In: Short M, Blair RW Jr (eds) Geomorphology from space, a global overview of regional landforms. NASA, SP 486, Washington DC, pp 1–26

    Google Scholar 

  • Bashenina NV, Blagovolin NS, Demek J, Dumitrashko NV, Ganeshin GS, Gellert JF, Leontyev OK, Mirnova AV, Scholz E (1971) Legend to the international geomorphological map of Europe 1: 2,500,000,. 5th version. Czechoslovak Academy of Sciences, Institute of Geography, Brno 30 p

    Google Scholar 

  • Batten P (2001) A new approach for landscape mapping. Proceedings of the 6th International Conference on Geocomputation. University of Queensland, Brisbane, Australia, 24–26 Sept 2001

    Google Scholar 

  • Bhaskara Rao VU, Vaidyanadhan R (1975) Photo geomorphic study of coastal features between Visakhapatnam and Pudimadaka in Andhra Pradesh. Photonirvachak 3(1):43–46

    Google Scholar 

  • Bishop MP, Shroder JF Jr (eds) (2004) GIS science and mountain geomorphology: Overview, feedbacks, and research directions. Springer-Praxis, Chichester, pp 1–31

    Google Scholar 

  • Blaszczynski JS (1997) Landform characterization with geographic information systems. Photogramm Eng Remote Sens 63(2):183–191

    Google Scholar 

  • Bloom AL (2003) Geomorphology – A systematic analysis of late Cenozoic landform, 3rd edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Bocco G, Mendoza M, Velázquez A (2001) Remote sensing and GIS-base regional geomorphological mapping – A tool for land use planning in developing countries. Geomorphology 39:211–219

    Article  Google Scholar 

  • Brändli M (1996) Hierarchical models for the definition and extraction of terrain features. In: Burrough PA, Frank AU (eds) Geographic objects with indeterminate boundaries. Taylor & Francis, London, pp 257–270

    Google Scholar 

  • Brocklehurst S, Whipple KX (2004) Hypsometry of glaciated landscapes. Earth Surf Process Landf 29(7):907–926. https://doi.org/10.1002/esp.1083

    Article  Google Scholar 

  • Burrough P (1989) Fuzzy mathematical methods for soil survey and land evaluation. J Soil Sci 40:477–492

    Article  Google Scholar 

  • Burrough P, van Gaans P, MacMillan R (2000) High-resolution landform classification using fuzzy k-means. Fuzzy Sets Syst 113(1):37–52

    Article  Google Scholar 

  • Chorley RJ, Kennedy BA (eds) (1971) Physical geography: a systems approach. Prentice Hall, London

    Google Scholar 

  • Cooke RU, Doornkamp JC (1974) Geomorphology in environmental management. An introduction. Oxford University press, Oxford, pp 22–44

    Google Scholar 

  • Cooke RU, Doornkamp JC (1990a) Geomorphology in environmental management. A new Introduction, 2nd edn. Clarendon Press, Oxford

    Google Scholar 

  • Cooke RU, Doornkamp JC (1990b) Mapping geomorphology (Cooke, Doornkamp eds.). Clarendon Press, Oxford, pp 22–63

    Google Scholar 

  • Dai FC, Lee CF (2002) Landslide characteristics and slope instability modelling using GIS, Lantau Island, Hong Kong. Geomorphology 42:213–228

    Article  Google Scholar 

  • De Carvalho OA Jr, Guimarães RF, Montgomery DR, Gillespie AR, Trancoso Gomes RA, de Souza Martins É, Silva NC (2014) Karst depression detection using ASTER, ALOS/PRISM and SRTM-derived digital elevation models in the Bambuí Group, Brazil. Remote Sens 6:330–351

    Article  Google Scholar 

  • Demek J (ed) (1972) Manual of detailed geomorphological mapping. Academia, Praha

    Google Scholar 

  • Demek J, Embleton C (eds.) (1978) Guide to medium-scale geomorphological mapping. E. Schweizerbart’sche Verlagsbuchhandlung (Nägele u. Obermiller), Stuttgart

    Google Scholar 

  • Demek J, Embleton C, Gellert JF, Verstappen HT (eds) (1972) Manual of detailed geomorphological mapping. Academia, Publishing House of the Czechoslovak Academy of Sciences, Prague 343 p

    Google Scholar 

  • Deng Y, Wilson JP (2008) Multi-scale and multi-criteria mapping of mountain peaks as fuzzy entities. Int J Geogr Inf Sci 22:205–218

    Article  Google Scholar 

  • Dent D, Young A (1981) Soil survey and land evaluation. George Allen & Unwin, London

    Google Scholar 

  • Dikau R (1989) The application of a digital relief model to landform analysis in geomorphology. In: Raper J (ed) Three dimensional applications in geographical information systems. Taylor and Francis, London, pp 51–77

    Google Scholar 

  • Dramis F, Guida D, Cestari A (2011) Nature and aims of geomorphological mapping. In: Smith MJ, Paron P, Griffiths J (eds) Geomorphological mapping: methods and applications. Elsevier, London, pp 39–74

    Chapter  Google Scholar 

  • Etzelmüller B, Sollid JL (1997) Glacier geomorphometry – an approach for analyzing long-term glacier surface changes using grid-based digital elevation models. Ann Glaciol 24:135–141

    Article  Google Scholar 

  • Etzelmüller B, Ødegård RS, Berthling I, Sollid JL (2001) Terrain parameters and remote sensing in the analysis of permafrost distribution and periglacial processes: principles and examples from southern Norway. Permafr Periglac Process 12:79–92

    Article  Google Scholar 

  • Evans IS (1998) What do terrain statistics really mean? In: Lane S, Richards K, Chandler J (eds) Landform monitoring, modelling and analysis. Wiley, Chichester, pp 119–138

    Google Scholar 

  • Finsterwalder R (1984) Utilization of orthophotographs in the mapping of high mountain regions. Mt Res Dev 4:315–318

    Article  Google Scholar 

  • Fookes PG, Lee EM, Griffiths JS (eds) (2007) Engineering geomorphology: theory and practice. CRC Press, New York

    Google Scholar 

  • Ford D, Williams P (1989) Karst geomorphology and hydrology. Chapman and Hall, London

    Book  Google Scholar 

  • Ford DC, Williams PW (2007) Karst geomorphology and hydrogeology, 2nd edn. Wiley, Chichester

    Book  Google Scholar 

  • Gilewska S (1966) IGU commission on applied geomorphology. Zeitschrift für Geomorphologie NF 10:191–192

    Google Scholar 

  • Gilewska S, Klimek M (1968) Project of the unified key to the detailed geomorphological map of the world. Foelia Geographica, Ser. Geographica-Physica, vol II. Polska Akademia Nauk, Kraków

    Google Scholar 

  • Gunn J (2004) Encyclopedia of caves and karst science. London, Fitzroy Dearborn

    Book  Google Scholar 

  • Gustavsson M (ed) (2006) Development of a detailed geomorphological mapping system and GIS database in Sweden. Acta University, Uppsala

    Google Scholar 

  • Gustavsson M, Kolstrup E, Seijmonsbergen AC (2006) A new symbol-and-GIS based detailed geomorphological mapping system: renewal of a scientific discipline for understanding landscape development. Geomorphology 77:90–111

    Article  Google Scholar 

  • Kar A (1993) Aeolian processes and bed forms in the Thar Desert. J Arid Environ 25:83–96

    Article  Google Scholar 

  • Kayan I, Klemas V (1978) Application of LANDSAT Imagery to studies of structural geology and geomorphology of the Mentese region of southwestern Turkey. Remote Sens Environ 7:51–60

    Article  Google Scholar 

  • Klimaszewski M (1990) Thirty years of geomorphological mapping. Geogr Pol 58:11–18

    Google Scholar 

  • Klingseisen B, Metternicht G, Paulus G (2007) Geomorphometric landscape analysis using a semi-automated GIS-approach. Environ Model Softw:1–13

    Google Scholar 

  • Knight J, Mitchell W, Rose J (2011) Geomorphological field mapping. In: Smith MJ, Paron P, Griffiths J (eds) Geomorphological mapping: methods and applications. Elsevier, London, pp 151–188

    Chapter  Google Scholar 

  • Krishnamurthy J, Srinivas G (1995) Role of geological and geomorphological factors in ground water exploration: a study using IRS LISS data. Int J Remote Sens 16(14):2595–2618

    Article  Google Scholar 

  • Lane SN, Richards KS, Chandler JH (eds) (1998) Landform monitoring, modelling and analysis. Wiley, Chichester

    Google Scholar 

  • Mantovani F, Soeters R, Westen VCJ (1996) Remote sensing technique for landslide studies and hazard zonation in Europe. Geomorphology 15:213–225

    Article  Google Scholar 

  • Novak ID, Soulkellis N (2000) Identifying geomorphic features using LANDSAT-5/TM data processing techniques on Lesvos, Greece. Geomorphology 34:101–109

    Article  Google Scholar 

  • Otto JC, Gustavsson M, Geilhausen M (2011) Cartography: design, symbolisation and visualisation of geomorphological maps. In: Smith M, Paron P, Griffiths J (eds) Geomorphological mapping: methods and applications. London, Elsevier, pp 253–296

    Chapter  Google Scholar 

  • Pain CF (1985) Mapping of landforms from LANDSAT imagery: an example from Eastern New South Wales, Australia. Remote Sens Environ 17:55–65

    Article  Google Scholar 

  • Pandey S, Singh S, Ghose B (1964) Orientation, distribution and origin of sand dunes in the central Luni basin. In: Proceedings, symposium on problems of Indian Arid Zone. CAZRI, Jodhpur, pp 84–91

    Google Scholar 

  • Pardo-Igúzquiza E, Durán JJ, Dowd PA (2013) Automatic detection and delineation of karst terrain depressions and its application in geomorphologic mapping and morphometric analysis. Acta Carsoligica 42:17–24

    Google Scholar 

  • Paron P, Claessens L (2011) Makers and users of geomorphological maps. In: Smith MJ, Paron P, Griffiths J (eds) Geomorphological mapping: methods and applications. Elsevier, London, pp 75–106

    Chapter  Google Scholar 

  • Quattrochi DA, Goodchild MF (eds) (1997) Scale in remote sensing and GIS. CRC Press, Boca Raton

    Google Scholar 

  • Ralston BA (1994) In: Fotheringham, Rogerson (eds) Object oriented spatial analysis. Taylor & Francis, London, pp 165–185

    Google Scholar 

  • Reddy GPO (2012) Geomorphological processes and evolution of landforms. In: Reddy GPO, Sarkar D (eds) Remote sensing and GIS in digital terrain analysis and soil-landscape modelling. National Bureau of Soil Survey and Land Use Planning No. 152, Nagpur, pp 26–35

    Google Scholar 

  • Reddy GPO, Maji AK (2003) Delineation and characterization of geomorphological features in a part of lower Maharahstra metamorphic plateau, using IRS-ID LISS-III data. J Indian Soc Remote Sens 31(4):241–250

    Article  Google Scholar 

  • Reddy GPO, Shekinah DE, Maurya UK, Thayalan S, Prasad J, Ray SK, Bhasker BP (1999) Landscape-soil relationship in part of Bazargaon plateau, Maharashtra. Geogr Rev India 61(3):280–291

    Google Scholar 

  • Reddy GPO, Maji AK, Srinivas CV, Velayutham M (2002) Geomorphological analysis for inventory of degraded lands in a river basin of basaltic terrain, using remote sensing data and Geographical Information Systems. J Indian Soc Remote Sens 30(1&2):15–31

    Article  Google Scholar 

  • Reddy GPO, Maji AK, Gajbhiye KS (2004) Drainage morphometry and its influence on landform characteristics in a basaltic terrain, Central India – a remote sensing and GIS approach. Int J Appl Earth Obs Geoinf 6:1–16

    Article  Google Scholar 

  • Sabins FF (2000) Remote sensing principles and interpretation, 3rd edn. W.H. Freeman and Company, New York, p 494

    Google Scholar 

  • Schmidt J, Dikau R (1999) Extracting geomorphic attributes and objects from digital elevation models — semantics, methods, future needs. In: Dikau R, Saurer H (eds) GIS for earth surface systems: analysis and modelling of the natural environment. Gebrüder Borntraeger Berlin, Stuttgart, pp 153–173

    Google Scholar 

  • Sheppard E, McMaster RB (eds) (2004) Scale and geographic inquiry. Blackwell Publishing, Malden

    Google Scholar 

  • Shroder JF Jr, Bishop MP (2003) A perspective on computer modeling and fieldwork. Geomorphology 53:1–9

    Article  Google Scholar 

  • Shroder JF Jr, Bishop MP (2004) Mountain geomorphic systems. In: Bishop MP, Shroder JF Jr (eds) Geographic information science and mountain geomorphology. Springer, Berlin, pp 33–73

    Google Scholar 

  • Siart C, Bubenzer O, Eitel B (2009) Combining digital elevation data (SRTM/ASTER), high resolution satellite imagery (Quickbird) and GIS for geomorphological mapping: a multi-component case study on Mediterranean karst in Central Crete. Geomorphology 112:106–121

    Article  Google Scholar 

  • Singh S (1982) Types and formation of sand dunes in the Rajasthan Desert. In: Sharma HS (ed) Perspectives in Geomorphology, vol. 4. Concept, Delhi, pp 165–183

    Google Scholar 

  • Slaymaker O (2001) The role of remote sensing in geomorphology and terrain analysis in the Canadian cordillera. Int J Appl Earth Obs Geoinf 3:11–17

    Article  Google Scholar 

  • Smith HTU (1954) Coastal dunes, Coastal geography conference, February 1954 office of Naval Research, pp 51–56

    Google Scholar 

  • Smith GR, Woodard JC, Heywood DI, Gibbard PL (2000) Interpreting Pleistocene glacial features from SPOT HRV data using fuzzy techniques. Comput Geosci 26:479–490

    Article  Google Scholar 

  • Smith MJ, Griffiths J, Paron P (eds) (2011) Geomorphological mapping: methods and applications. Elsevier, London

    Google Scholar 

  • Tate JN, Atkinson PM (eds) (2001) Modelling scale in geographical information science. Wiley, Chichester

    Google Scholar 

  • Tate JN, Wood J (2001) In: Tate A (ed) Fractals and scale dependencies in topography. Wiley, Chichester, pp 35–52

    Google Scholar 

  • Unified Key (1968) Project of the unified key to the detailed geomorphological map of the world. Folia Geographica, Ser. Geographica-Physica, II. Polska Akademia Nauk. Kraków

    Google Scholar 

  • USDA Forest Service (1993) National hierarchical framework of ecological units. ECOMAP, Washington, DC 12 pp

    Google Scholar 

  • Usery EL (1996) In: Burrough, Frank (eds) A conceptual framework and fuzzy set implementation for geographic features. Taylor and Francis, London, pp 71–85

    Google Scholar 

  • Vats PC, Singh S, Ghose B, Kaith DS (1976) Types, orientation and distribution of sand dunes in Bikaner District. Geograp Obs 12:69–75

    Google Scholar 

  • Verstappen HT (1977) Remote sensing in geomorphology. Elseviers, Amsterdam

    Google Scholar 

  • Verstappen HT (1983) Applied geomorphology (geomorphological surveys for environmental development). Elsevier, Amsterdam 442 p

    Google Scholar 

  • Verstappen HT (2011) Old and new trends in geomorphological and landform mapping. In: Smith MJ, Paron P, Griffiths J (eds) Geomorphological mapping: methods and applications. London, Elsevier, pp 13–38

    Chapter  Google Scholar 

  • Verstappen HT, Van Zuidam RA (1968) ITC textbook of photo-interpretation, VII: 2 –ITC system of geomorphological survey. ITC, Delft

    Google Scholar 

  • Warner T, Shank M (1997) An evaluation of the potential for fuzzy classification of multispectral data using artificial neural networks. Photogramm Eng Remote Sens 63(11):1285–1294

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Reddy, G.P.O. (2018). Remote Sensing and GIS for Geomorphological Mapping. In: Reddy, G., Singh, S. (eds) Geospatial Technologies in Land Resources Mapping, Monitoring and Management. Geotechnologies and the Environment, vol 21. Springer, Cham. https://doi.org/10.1007/978-3-319-78711-4_12

Download citation

Publish with us

Policies and ethics