Skip to main content

Part of the book series: Geotechnologies and the Environment ((GEOTECH,volume 21))

Abstract

Topography is an important land surface characteristic that affects most aspects of the water balance in a catchment, including the generation of surface and subsurface runoff, the flow paths followed by water as it moves down and through hillslopes, and the rate of water movement. Topographic attributes derived from digital elevation models (DEMs) and automated terrain analyses are increasingly used in terrain analysis and geomorphological research. DEM is convenient for representing the continuously varying topographic surface of the Earth, and it is a common data source for terrain analysis and other spatial applications. The utility of the DEM is evidenced by widespread availability of satellite-based DEMs at different resolutions and by the ever-increasing list of uses from DEM. Common terrain attributes, which could be computed from a DEM include slope gradient, slope aspect, slope curvature, upslope length, specific catchment area, compound topographic index (CTI) etc. One of the most limiting factors of the use of the DEM is its accuracy and spatial resolution. DEM of different resolutions could be used to derive DEM-based attributes, which could be used to investigate and evaluate resources like soil, water, vegetation, etc., in given landscape. In digital terrain modeling, predictive relationships developed at one scale might not be much useful for prediction of variables at different scales. That may limit the use of terrain variables developed for large scale in small-scale studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • ASCE (1999) GIS modules and distributed models of the watershed. ASCE, Virginia, USA, 24

    Google Scholar 

  • Bertolo F (2000) Catchment delineation and characterization: a review. Technical report EUR 19563 EN, Joint Research Centre European Commission, Ispra, Italy, 30pp

    Google Scholar 

  • Burrough PA (1986) Principles of geographical information systems for land resource assessment. Clarendon Press, Oxford

    Google Scholar 

  • Burrough PA, McDonnell RA (1998) Principles of geographical information systems. Oxford University Press, New York

    Google Scholar 

  • Carter JR (1988) Digital representations of topographic surfaces. Photogramm Eng Remote Sens 54(11):1577–1580

    Google Scholar 

  • Collins SH, Moon FGC (1981) Algorithms for dense digital terrain models. Photogramm Eng Remote Sens 47(1):71–76

    Google Scholar 

  • Dikau R, Brabb EE, Mark RK, Pike RJ (1995) Morphometric landform analysis of New Mexico, Zeitschrift für Geomorphologie, N.F., Suppl-Bd, 101:109–126

    Google Scholar 

  • Doyle FJ (1978) Digital terrain models: an overview. Photogramm Eng Remote Sens 44:1481–1487

    Google Scholar 

  • Evans IS (1972) General geomorphometry, derivatives of altitude, and descriptive statistics. In: Chorley RJ (ed) Spatial analysis in geomorphology. London, Methuen, pp 17–90

    Google Scholar 

  • Evans IS (1980) An integrated system for terrain analysis for slope mapping. Z Geomorphol 36:274–295

    Google Scholar 

  • Giles PT (1998) Geomorphological signatures: classification of aggregated slope unit objects from digital elevation and remote sensing data. Earth Surf Process Landf 23:581–594

    Article  Google Scholar 

  • Jenness J (2006) Topographic Position Index (tpi_jen.avx) Extension for ArcView 3.x, v. 1.3a. Jenness Enterprises

    Google Scholar 

  • Jenson SK, Domingue’s JO (1988) Extarcting topographic structures from digital elevation data geographic information system analysis. Photogramm Eng Remote Sens 54(11):1593–1600

    Google Scholar 

  • Kääb A, Huggel C, Paul F, Wessels R, Raup B, Kieffer H, Kargel J (2003) Glacier monitoring from ASTER imagery: accuracy and applications. EARSEL eProc 2:43–53

    Google Scholar 

  • Kalma JD, Sivapalan M (1995) Scale issues in hydrological modeling. Wiley, New York

    Google Scholar 

  • Kattimani JM, Prasad TJR (2016) Cartosat digital elevation model (DEM) to drainage extraction techniques of Vrushabhavati basin of Karnataka, India using remote sensing and GIS techniques. Int J Adv Res 4(7):2008–2013

    Article  Google Scholar 

  • Kidner DB, Smith DH (1992) Compression of digital elevation models by Huffman coding. Comput Geosci 18(8):1013–1034

    Article  Google Scholar 

  • Klimanek M (2006) Optimization of digital terrain model for its application in forestry. J For Sci 52(5):233–241

    Article  Google Scholar 

  • Kraus K (2000) Photogrammetrie, Band 3, Topographische Informationssysteme. Dümmler Verlag, in Druck

    Google Scholar 

  • Langbein WB, Basil W (1947) Topographic characteristics of drainage basins. USGS Water-Suppl Pap 968-C:125–158

    Google Scholar 

  • Liu X, Zhang Z (2011) Drainage network extraction using LiDAR-derived DEM in volcanic plains. Area 43(1):42–52

    Google Scholar 

  • Martz LW, Garbrecht J (1998) The treatment of flat areas and closed depressions in automated drainage analysis of raster digital elevation models. Hydrol Process 12:843–855

    Article  Google Scholar 

  • Martz LW, Garbrecht J (1999) An outlet breaching algorithm for the treatment of closed depressions in a raster DEM. Comput Geosci 25:835–844

    Article  Google Scholar 

  • Miller CL, Laflamme RA (1958) The digital terrain model: theory and application. Photogramm Eng Remote Sens 24:433–422

    Google Scholar 

  • Mitchell D, Netravali A (1988) Reconstruction filters in computer graphics. ACM Comput Graph 22:221–228

    Article  Google Scholar 

  • Moore ID, Foster GR (1990) Hydraulics and overland flow. In: Anderson MG, Burt TP (eds) Process studies in hillslope hydrology. Wiley, New York, pp 215–252

    Google Scholar 

  • Moore ID, Wilson JP (1992) Length-slope factors for the revised universal soil loss equation: simplified method of estimation. J Soil Water Conserv 47:423–428

    Google Scholar 

  • Moore ID, O’loughlin EM, Burch GJ (1988) A contourbased topographic model for hydrological and ecological applications. Earth Surf Process Landf 13(4):305–320

    Article  Google Scholar 

  • Moore ID, Grayson RB, Ladson AR (1991) Digital terrain modeling: a review of hydrological, geomorphological, and biological applications. Hydrol Process 5:3–30

    Article  Google Scholar 

  • Moore ID, Lewis A, Gallant JC (1993a) Terrain attributes: estimation method and scale effects. In: Jakeman AK, Beck MB, McAleer MJ (eds) Modeling change in environmental systems. Wiley, New York, pp 30–38

    Google Scholar 

  • Moore ID, Gessler PE, Nielsen GA, Peterson GA (1993b) Soil attribute prediction using terrain analysis. Soil Sci Soc Am J 57:443–452

    Article  Google Scholar 

  • Nellis MD, Lulla KM, Jensen J (1990) Interfacing geographic information system and remote sensing for rural land-use analysis. Photogramm Eng Remote Sens 56(3):329–331

    Google Scholar 

  • O’Loughlin EM (1986) Prediction of surface saturation zones in natural catchments by topo- graphic analysis. Water Resour Res 22(5):794–804

    Article  Google Scholar 

  • Onstad CA, Brakensiek BL (1968) Watershed simulation by stream path analogy. Water Resour Res 4(5):965–971

    Article  Google Scholar 

  • Paik K (2008) Global search algorithm for nondispersive flow path. J Geogr Res 113(F04001):9

    Google Scholar 

  • Pareta K, Pareta U (2011) Quantitative morphometric analysis of a watershed of Yamuna basin, India using ASTER (DEM) data and GIS. Int J Geomatics Geosci 2:248–269

    Article  Google Scholar 

  • Park S, Choi C, Kim B, Kim J (2013) Landslide susceptibility mapping using frequency ratio, analytic hierarchy process, logistic regression, and artificial neural network methods at the Inje area, Korea. Environ Earth Sci 68:1443–1464

    Article  Google Scholar 

  • Paron P, Claessens L (2011) Makers and users of geomorphological maps. In: Smith MJ, Paron P, Griffiths J (eds) Geomorphological mapping: methods and applications. Elsevier, London

    Google Scholar 

  • Pfeifer N, Pottmann H (1996) Surface models on the basis of a triangular mesh – surface reconstruction. Int Arch Photogramm Remote Sens XXXI, IWG III/IV, 638–643, Vienna, Austria

    Google Scholar 

  • Podobnikar T (2005) Production of integrated digital terrain model from multiple datasets of different quality. Int J Geogr Inf Sci 19(1):69–89

    Article  Google Scholar 

  • Podobnikar T (2008) Simulation and representation of the positional errors of boundary and interior regions in maps. Moore A, Drecki I (eds) Geospatial vision: new dimensions in cartography, pp 141–169, Lecture notes in geoinformation and cartography

    Google Scholar 

  • Pradhan AMS, Kim YT (2014) Relative effect method of landslide susceptibility zonation in weathered granite soil: a case study in Deokjeok-ri Creek, South Korea. Notational Hazards 72(2):1189–1217

    Article  Google Scholar 

  • Reddy GPO (2012a) Digital elevation models- sources and resolutions. In: Reddy GPO, Sarkar D (eds) Remote sensing and GIS in digital terrain analysis and soil-landscape modeling, NBSS&LUP Publ. No. 152, pp 121–125

    Google Scholar 

  • Reddy GPO (2012b) Principles and applications of digital terrain analysis. In: Reddy GPO, Sarkar D (eds) Remote sensing and GIS in digital terrain analysis and soil-landscape modeling, NBSS&LUP Publ. No. 152, pp 129–135

    Google Scholar 

  • Reddy GPO (2012c) Advances of GIS and remote sensing in hydro-geomorphology. In: Reddy GPO, Sarkar D (eds) Remote sensing and GIS in digital terrain analysis and soil-landscape modeling, NBSS&LUP Publ. No. 152, pp 184–193

    Google Scholar 

  • Reddy GPO (2012d) Extraction of terrain variables from DEM. In: Reddy GPO, Sarkar D (eds) Remote sensing and GIS in digital terrain analysis and soil-landscape modeling, NBSS&LUP Publ. No. 152, pp 140–146

    Google Scholar 

  • Reddy GPO, Maji AK, Gajbhiye KS (2002) GIS for Morhophometric analysis of river basins. GIS India 11(9):9–14

    Google Scholar 

  • Reddy GPO, Maji AK, Gajbhiye KS (2004a) Drainage morphometry and its influence on landform characteristics in basaltic terrain – a remote sensing and GIS approach. Int J Appl Earth Obs Geoinf 6:1–16

    Article  Google Scholar 

  • Reddy GPO, Maji AK, Chary GR, Srinivas CV, Tiwary P, Gajbhiye KS (2004b) GIS and remote sensing applications in prioritization of river sub basins using morphometric and USLE parameters— a case study. Asian J Geoinf 4(4):35–49

    Google Scholar 

  • Reddy GPO, Maji AK, Das SN, Srivastava R (2012) Development of GIS based seamless mosaic of SRTM elevation data of India to analyze and characterize the selected geomorphic parameters. Project report. NBSS&LUP, Nagpur 54p

    Google Scholar 

  • Reddy GPO, Nagaraju MSS, Ramteke IK, Sarkar D (2013) Terrain characterization for soil resource mapping in part of semi-tract of Central India using high resolution satellite data and GIS. J Indian Soc Remote Sens 41:331–343

    Article  Google Scholar 

  • Reddy GPO, Kumar N, Sahu N, Singh SK (2017) Comparative evaluation of automatic drainage extraction using ASTER and Cartosat-1 DEM in basaltic terrain of Central India. Egyptian J Remote Sens Space Sci 21:95. https://doi.org/10.1016/j.ejrs.2017.04.001

    Article  Google Scholar 

  • Sahu N, Reddy GPO, Kumar N, Nagaraju MSS, Srivastava R, Singh SK (2016) Morphometric analysis in basaltic terrain of Central India using GIS techniques: a case study. Appl Water Sci 7(5):2493–2499

    Article  Google Scholar 

  • Sameena M, Krishnamurthy J, Jayaraman V, Ranganna G (2009) Evaluation of drainage networks developed in hard rock terrain. Geocarto Int 24(5):397–420

    Article  Google Scholar 

  • Schenk AF (1989) Determination of DEM using iteratively rectified images. Photogrammetry Technical Report No 3. Department of Geodetic Science and Surveying, The Ohio State University. Columbus, Ohio

    Google Scholar 

  • Singh P, Gupta A, Singh M (2014) Hydrological inferences from watershed analysis for water resource management using remote sensing and GIS techniques. Egyptian J Remote Sens Space Sci 17:111–121

    Article  Google Scholar 

  • Smith MJ, Pain CF (2009) Applications of remote sensing in geomorphology. Prog Phys Geogr 33(4):568–582

    Article  Google Scholar 

  • Smith MJ, Griffiths J, Paron P (eds) (2011) Geomorphological mapping: methods and applications. Developments in earth surface processes. Elsevier, London

    Google Scholar 

  • Strahler AN (1952) Hypsometric (area-altitude) analysis of erosional topography. Geol Soc Am Bull 63:1117–1142

    Article  Google Scholar 

  • Strahler AN (1957) Quantitative analysis of watershed geomorphology. Trans Am Geophys Union 33:913–920

    Article  Google Scholar 

  • Tarboton DG, Bras RF, Rodriguez-Iturbe I (1991) On the extraction of channel networks from digital elevation data. Hydrol Process 5:81–100

    Article  Google Scholar 

  • Tucker GE, Catani F, Rinaldo A, Bras RL (2001) Statistical analysis of drainage density from digital terrain data. Geomorphology 36:187–202

    Article  Google Scholar 

  • USGS (1993) Digital elevation models, Data user guide 5. US Geological Survey, Reston, Virginia

    Google Scholar 

  • Valeriano MM, Kuplich TM, Storino M, Amaral BD, Mendes JN Jr, Lima DJ (2006) Modeling small watersheds in Brazilian Amazonia with shuttle radar topographic mission-90m data. Comput Geosci 32:1169–1181

    Article  Google Scholar 

  • Vijith H, Satheesh R (2006) GIS based morphometric analysis of two major upland sub-watersheds of Meenachil river in Kerala. J Indian Soc Remote Sens 34(2):181–185

    Article  Google Scholar 

  • Weibel R, Heller M (1991) Digital terrain modelling. In: Maguire DJ, Goodchild MF, Rhind DW (eds) Geographical information systems: principles and applications. Longman, London, pp 269–297

    Google Scholar 

  • Wilson JP, Gallant JC (2000) Terrain analysis: principles and applications. J.W. Wiley, p 469

    Google Scholar 

  • Wilson JP, Spangrud DJ, Nielsen GA, Jacobsen JS, Tyler DA (1998) Global positioning system sampling intensity and pattern effects on computed topographic attributes. Soil Sci Soc Am J 62:1410–1417

    Article  Google Scholar 

  • Zevenbergen LW, Thorne CR (1987) Quantitative analysis of land surface topography. Earth Surf Process Landf 12:47–56

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Reddy, G.P.O. (2018). Remote Sensing and GIS in Digital Terrain Modeling. In: Reddy, G., Singh, S. (eds) Geospatial Technologies in Land Resources Mapping, Monitoring and Management. Geotechnologies and the Environment, vol 21. Springer, Cham. https://doi.org/10.1007/978-3-319-78711-4_11

Download citation

Publish with us

Policies and ethics