Skip to main content

Traveling Waves

  • Chapter
  • First Online:
Coherent Structures in Granular Crystals

Part of the book series: SpringerBriefs in Physics ((SpringerBriefs in Physics))

Abstract

Arguably, the most prototypical nonlinear wave structure that can arise in granular crystals consists of traveling waves. While many kinds of traveling waves exist (such as periodic ones [1]), in this chapter we are interested in ones that are spatially localized, i.e., traveling solitary waves (which we will simply call traveling waves when the distinction is clear). In fact, in the first “phase” of research on this topic, as covered extensively by the quintessential references of [2, 3], shock waves (the subject of the previous chapter) had barely been touched upon, while breathers (the subject of the next chapter) were altogether absent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Y. Starosvetsky, K. Jayaprakash, M.A. Hasan, A. Vakakis, Dynamics and Acoustics of Ordered Granular Media (World Scientific, Singapore, 2017)

    Book  MATH  Google Scholar 

  2. V.F. Nesterenko, Dynamics of Heterogeneous Materials (Springer-Verlag, New York, 2001)

    Google Scholar 

  3. S. Sen, J. Hong, J. Bang, E. Avalos, R. Doney, Solitary waves in the granular chain. Phys. Rep. 462, 21 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  4. A.N. Lazaridi, V.F. Nesterenko, Observation of a new type of solitary waves in one-dimensional granular medium. J. Appl. Mech. Tech. Phys. 26, 405 (1985)

    Article  ADS  Google Scholar 

  5. C. Chong, M.A. Porter, P.G. Kevrekidis, C. Daraio, Nonlinear coherent structures in granular crystals. J. Phys. Condens. Matter 29, 413003 (2017)

    Article  Google Scholar 

  6. M. Toda, Theory of nonlinear lattices (Springer, Heidelberg, 1989)

    Book  MATH  Google Scholar 

  7. E. Fermi, J. Pasta, S. Ulam, Studies of Nonlinear Problems. I., (Los Alamos National Laboratory, Los Alamos, NM, USA), Technical Report (1955), pp. LA–1940

    Google Scholar 

  8. K. Atkinson, An Introduction to Numerical Analysis (Wiley, Hoboken, 1989)

    Google Scholar 

  9. P.G. Drazin, R.S. Johnson, Solitons: An Introduction (Cambridge University Press, Cambridge, 1989)

    Book  MATH  Google Scholar 

  10. R. Hirota, Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons. Phys. Rev. Lett. 27, 1192–1194 (1971)

    Article  ADS  MATH  Google Scholar 

  11. H.D. Wahlquist, F.B. Estabrook, Bäcklund transformation for solutions of the Korteweg-de Vries equation. Phys. Rev. Lett. 31, 1386–1390 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  12. T.R. Marchant, Asymptotic solitons of the extended Korteweg-de Vries equation. Phys. Rev. E 59, 3745–3748 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  13. Y. Shen, P.G. Kevrekidis, S. Sen, A. Hoffman, Characterizing traveling-wave collisions in granular chains starting from integrable limits: the case of the Korteweg-de Vries equation and the Toda lattice. Phys. Rev. E 90, 022905 (2014)

    Article  ADS  Google Scholar 

  14. P. Rosenau, J.M. Hyman, Compactons: solitons with finite wavelength. Phys. Rev. Lett. 70, 564–567 (1993)

    Article  ADS  MATH  Google Scholar 

  15. B. Dey, Compactons, Preprint (2017)

    Google Scholar 

  16. V.F. Nesterenko, Propagation of nonlinear compression pulses in granular media. J. Appl. Mech. Tech. Phys. 24, 733 (1983)

    Article  ADS  Google Scholar 

  17. K. Ahnert, A. Pikovsky, Compactons and chaos in strongly nonlinear lattices. Phys. Rev. E 79, 026209 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  18. M.A. Collins, A quasicontinuum approximation for solitons in an atomic chain. Chem. Phys. Lett. 77, 342 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  19. D. Hochstrasser, F. Mertens, H. Büttner, An iterative method for the calculation of narrow solitary excitations on atomic chains. Physica D 35, 259 (1989)

    Article  ADS  Google Scholar 

  20. J.A.D. Wattis, Approximations to solitary waves on lattices. II. Quasi-continuum methods for fast and slow waves. J. Phys. A Math. Gen. 26, 1193 (1993)

    Google Scholar 

  21. C. Coste, E. Falcon, S. Fauve, Solitary waves in a chain of beads under Hertz contact. Phys. Rev. E 56, 6104 (1997)

    Article  ADS  Google Scholar 

  22. G. Friesecke, J.A.D. Wattis, Existence theorem for solitary waves on lattices. Commun. Math. Phys. 161, 391 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. R.S. MacKay, Solitary waves in a chain of beads under Hertz contact. Phys. Lett. A 251, 191 (1999)

    Article  ADS  Google Scholar 

  24. A. Chatterjee, Asymptotic solution for solitary waves in a chain of elastic spheres. Phys. Rev. E 59, 5912 (1999)

    Article  ADS  Google Scholar 

  25. J.M. English, R.L. Pego, On the solitary wave pulse in a chain of beads. Proc. AMS 133, 1763 (2005)

    Google Scholar 

  26. E. Kim, R. Chaunsali, H. Xu, J. Castillo, J. Yang, P.G. Kevrekidis, A.F. Vakakis, Nonlinear low-to-high frequency energy cascades in diatomic granular crystals. Phys. Rev. E 92, 062201 (2015)

    Google Scholar 

  27. A. Stefanov, P.G. Kevrekidis, On the existence of solitary traveling waves for generalized Hertzian chains. J. Nonlinear Sci. 22, 327 (2012)

    Google Scholar 

  28. A. Stefanov, P.G. Kevrekidis, Traveling waves for monomer chains with pre-compression. Nonlinearity 26, 539 (2013)

    Google Scholar 

  29. J. Cuevas-Maraver, P.G. Kevrekidis, A. Vainchtein, H. Xu, Unifying perspective: solitary traveling waves as discrete breathers in Hamiltonian lattices and energy criteria for their stability. Phys. Rev. E 96, 032214 (2017)

    Google Scholar 

  30. G. Friesecke, R.L. Pego, Solitary waves on Fermi-Pasta-Ulam lattices: III Howland-type Floquet theory. Nonlinearity 17, 207 (2004)

    Google Scholar 

  31. P.G. Kevrekidis, J. Cuevas-Maraver, D.E. Pelinovsky, Energy criterion for the spectral stability of discrete breathers. Phys. Rev. Lett. 117, 094101 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Chong .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chong, C., Kevrekidis, P.G. (2018). Traveling Waves. In: Coherent Structures in Granular Crystals. SpringerBriefs in Physics. Springer, Cham. https://doi.org/10.1007/978-3-319-77884-6_3

Download citation

Publish with us

Policies and ethics