Skip to main content

Incomplete Markets (Utility over Terminal Wealth)

  • Chapter
  • First Online:
Continuous-Time Asset Pricing Theory

Part of the book series: Springer Finance ((SFTEXT))

  • 2327 Accesses

Abstract

This chapter studies the investor’s portfolio optimization problem in an incomplete market. The solution in this chapter parallels the solution for the complete market setting in the portfolio optimization Chap. 1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. W. Brannath, W. Schachermayer, A Bipolar Theorem for \(L_{+}^{0}(\Omega ,\mathcal {F},P)\). Seminaire de probabilites (Strasbourg) 33, 349–354 (1999)

    Google Scholar 

  2. R. Dana, M. Jeanblanc, Financial Markets in Continuous Time (Springer, Berlin, 2003)

    MATH  Google Scholar 

  3. J. Detemple, R. Garcia, M. Rindisbacher, Simulation methods for optimal portfolios, in Handbooks in OR & MS, ed. by J.R. Birge, V. Linetsky, vol. 15 (Elsevier B. V. Amsterdam, 2008)

    Google Scholar 

  4. G. Di Nunno, B. Oksendal, F. Proske, Malliavin Calculus for Levy Processes with Applications in Finance (Springer, Berlin, 2009)

    Book  Google Scholar 

  5. D. Duffie, Dynamic Asset Pricing Theory, 3rd edn. (Princeton University Press, Princeton, NJ, 2001)

    MATH  Google Scholar 

  6. O. Guler, Foundations of Optimization (Springer, New York, 2010)

    Book  Google Scholar 

  7. I. Karatzas and S. Shreve, Methods of Mathematical Finance (Springer, Berlin, 1999)

    MATH  Google Scholar 

  8. I. Karatzas, G. Zitkovic, Optimal consumption from investment and random endowment in incomplete semimartingale markets. Ann. Probab. 31(4), 1821–1858 (2003)

    Article  MathSciNet  Google Scholar 

  9. I. Karatzas, P. Lehoczky, S. Shreve, G. Xu, Martingale and duality methods for utility maximization in an incomplete market. J. Control Optim. 29(3), 702–730 (1991)

    Article  MathSciNet  Google Scholar 

  10. D. Kramkov, W. Schachermayer, The asymptotic elasticity of utility functions and optimal investment in incomplete markets. Ann. Appl. Probab. 9(3), 904–950 (1999)

    Article  MathSciNet  Google Scholar 

  11. D. Kramkov, K. Weston, Muckenhoupt’s Ap condition and the existence of the optimal martingale measure. Working paper, Carnegie Mellon University (2015)

    MATH  Google Scholar 

  12. R.C. Merton, Continuous Time Finance (Basil Blackwell, Cambridge, MA, 1990)

    MATH  Google Scholar 

  13. O. Mostovyi, Necessary and sufficient conditions in the problem of optimal investment with intermediate consumption. Finance Stoch. 19, 135–159 (2015)

    Article  MathSciNet  Google Scholar 

  14. H. Pham, Continuous time Stochastic Control and Optimization with Financial Applications (Springer, Berlin, 2009)

    Book  Google Scholar 

  15. P. Protter, Stochastic Integration and Differential Equations, 2nd edn., version 2.1 (Springer, Berlin, 2005)

    Google Scholar 

  16. W. Schachermayer, Portfolio optimization in incomplete financial markets, in Mathematical Finance: Bachelier Congress 2000, ed. by H. Geman, D. Madan, S.R. Pliska, T. Vorst (Springer, Berlin, 2001), pp. 427–462

    Google Scholar 

  17. H. Theil, Principles of Econometrics (Wiley, New York, 1971)

    MATH  Google Scholar 

  18. G. Zitkovic, Utility maximization with a stochastic clock and an unbounded random endowment. Ann. Appl. Probab. 15(1B), 748–777 (2005)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Appendix

Appendix

Lemma 11.3 (Existence of a Saddle Point)

Assume that

  1. (1)

    a solution \(\hat {X}_{T}\) exists to \(v(x)=\underset {X_{T}\in \mathcal {C}^{e}(x)}{\sup }E\left [U(X_{T})\right ]\) and

  2. (2)

    a solution \(\hat {Y}_{T}\) exists to \(\tilde {v}(y)=\underset {Y_{T}\in D_{s}}{\inf }E[\tilde {U}(yY_{T})]\).

Then, v and \(\tilde {v}\) are in conjugate duality, i.e.

$$\displaystyle \begin{aligned} v(x)=\underset{y>0}{\inf}\left(\tilde{v}(y)+xy\right),\:\forall x>0{} \end{aligned} $$
(11.30)
$$\displaystyle \begin{aligned} \tilde{v}(y)=\underset{x>0}{\sup}\left(v(x)-xy\right),\:\forall y>0. \end{aligned} $$
(11.31)

In addition,

  1. (i)

    \(\tilde {v}\) is strictly convex, decreasing, and differentiable on (0, ∞),

  2. (ii)

    v is strictly concave, increasing, and differentiable on (0, ∞),

  3. (iii)

    defining \(\hat {y}\) to be where the infimum is attained in expression (11.30),

    $$\displaystyle \begin{aligned} v(x)=\tilde{v}(\hat{y})+x\hat{y}. \end{aligned}$$

    And, \((\hat {X}_{T},\hat {Y}_{T},\hat {y})\) is a saddle point of \(\mathcal {L}(\hat {X}_{T},\hat {Y}_{T},\hat {y})\).

Proof (Part 1)

If a solution \(\hat {X}_{T}\) exists to \(v(x)=\underset {X_{T}\in \mathcal {C}^{e}(x)}{\sup }E\left [U(X_{T})\right ]\), then by the free disposal Lemma 11.1, it has the identical solution and value function as \(v(x)=\underset {X_{T}\in \mathcal {C}(x)}{\sup }E\left [U(X_{T})\right ]\).

Given v(x) define \(v^{*}(y)=\underset {x>0}{\sup }\left (v(x)-xy\right ),\:\forall y>0\).

First, because v(x) < ∞ for some x > 0, v is proper. v is increasing and strictly concave because \(v(x)=\underset {X_{T}\in \mathcal {C}(x)}{\sup }E\left [U(X_{T})\right ]\) and U is increasing and strictly concave. This implies v(x) < ∞ for all x > 0 (see Pham [149, p. 181]). v(x) is strictly concave on (0, ∞), hence continuous on (0, ∞), and therefore upper semi-continuous.

By Pham [149, Theorem B.2.3, p. 219], v and v ∗ are in conjugate duality, where \(v(x)=\underset {y>0}{\inf }\left (v^{*}(y)+xy\right )\).

By Pham [149, Proposition B.2.4, p. 219], we get that v ∗(y) is differentiable on \(\text{int}(\text{dom}(\tilde {v}))\).

By Pham [149, Proposition B.3.5, p. 219], since v ∗ is strictly convex, we get v is differential on (0, ∞).

To complete the proof, we need to show that \(v^{*}(y)=\tilde {v}(y)\).

(Step 1) By the definition of \(\tilde {U}\) we have \(U(x)\leq \tilde {U}(y)+xy\) for all x > 0 and y > 0.

Thus, \(U(X_{T})\leq \tilde {U}(yY_{T})+X_{T}yY_{T}\) for \(X_{T}\in \mathcal {C}(x)\). Taking expectations yields

$$\displaystyle \begin{aligned}E\left[U(X_{T})\right]\leq E[\tilde{U}(yY_{T})]+yE\left[X_{T}Y_{T}\right]\leq E[\tilde{U}(yY_{T})]+yx.\end{aligned}$$

The last inequality uses \(X_{T}\in \mathcal {C}(x)\).

Taking the supremum on the left side, the infimum on the right side, and using the definition of \(\tilde {v}(y)=\underset {Y_{T}\in D_{s}}{\inf }E[\tilde {U}(yY_{T})]\), we get:

$$\displaystyle \begin{aligned}v(x)\leq\tilde{v}(y)+xy\; \text{for all}\; y>0,\; \text{or}\; v(x)\leq\underset{y>0}{\inf}\left(\tilde{v}(y)+xy\right).\end{aligned}$$

(Step 2) We have \(\tilde {U}(y)=U(I(y))-yI(y)\) for all y > 0.

Hence, \(\tilde {U}(y\hat {Y}_{T})=U(I(y\hat {Y}_{T}))-yY_{T}I(y\hat {Y}_{T})\) where \(\hat {Y}_{T}\) attains \(\tilde {v}(y)\).

Take expectations to get

$$\displaystyle \begin{aligned}\tilde{v}(y)=E\left[U(I(y\hat{Y}_{T}))\right]-yE\left[\hat{Y}_{T}I(y\hat{Y}_{T})\right].\end{aligned}$$

Choose y such that \(X_{T}=I(y\hat {Y}_{T})\in \mathcal {C}(x)\). Then, this equals \(\tilde {v}(y)+xy=E\left [U(X_{T})\right ]\).

Taking the supremum on the right side yields

\(\tilde {v}(y)+xy\leq v(x)\). The infimum of the left side gives \(\underset {y>0}{\inf }\left (\tilde {v}(y)+xy\right )\leq v(x)\).

Combined steps 1 and 2 show \(\underset {y>0}{\inf }\left (\tilde {v}(y)+xy\right )=v(x)\).

Because \(\tilde {v}(x)<\infty \) for some x > 0, \(\tilde {v}\) is proper.

Because \(\tilde {v}(y)=\underset {Y_{T}\in D_{s}}{\inf }E[\tilde {U}(yY_{T})]\), we see that \(\tilde {v}\) is strictly convex, hence continuous on \(\text{int}(\text{dom}(\tilde {v}))\).

By Pham [126, Theorem B.2.3, p. 219], \(\tilde {v}(y)=\underset {x>0}{\sup }\left (v(x)-xy\right ),\:\forall y>0\).

Define \(\hat {y}\) to be where the infimum is attained in \(\underset {y>0}{\inf }\left (\tilde {v}(y)+xy\right )=v(x)\). It exists because v(x) < ∞ and \(\tilde {v}\) is strictly convex. Then, \(v(x)=\tilde {v}(\hat {y})+x\hat {y}.\)

(Part 2) By Guler [66, p. 278], \(\mathcal {L}(\hat {X}_{T},\hat {Y}_{T},\hat {y})\) is a saddle point if and only if the solution to the primal problem equals the solution to the dual problem, i.e.

$$\displaystyle \begin{aligned} v(x)=\underset{X_{T}\in L_{+}^{0}}{\sup}\left(\underset{Y_{T}\in D_{s},\,y>0}{\inf}\mathcal{L}(X_{T},Y_{T},y)\right) =\underset{Y_{T}\in D_{s},\,y>0}{\inf}\left(\underset{X_{T}\in L_{+}^{0}}{\sup}\,\mathcal{L}(X_{T},Y_{T},y)\right). \end{aligned}$$

We show this later condition.

First, \(v(x)=\underset {y>0}{\inf }\left (\tilde {v}(y)+xy\right )\). Using the definitions, this is equivalent to

$$\displaystyle \begin{aligned} \begin{array}{rcl} v(x)&\displaystyle =&\displaystyle \underset{y>0}{\inf}\left(\underset{Y_{T}\in D_{s}}{\inf}E[\tilde{U}(yY_{T})]+xy\right)\\ &\displaystyle =&\displaystyle \underset{y>0}{\inf}\left(\underset{Y_{T}\in D_{s}}{\inf}E\left[\underset{X_{T}\in L_{+}^{0}}{\sup}U(X_{T})-yX_{T}Y_{T}\right]+xy\right). \end{array} \end{aligned} $$

Exchange the sup and E[â‹…] operator, which is justified by the same proof as in the appendix to the portfolio optimization Chap. 10.

$$\displaystyle \begin{aligned} \begin{array}{rcl} v(x)&\displaystyle =&\displaystyle \underset{y>0}{\inf}\left(\underset{Y_{T}\in D_{s}}{\inf}\left(\underset{X_{T}\in L_{+}^{0}}{\sup}E\left[U(X_{T})-yX_{T}Y_{T}\right]\right)+xy\right)\\ &\displaystyle =&\displaystyle \underset{y>0}{\inf}\left(\underset{Y_{T}\in D_{s}}{\inf}\left(\underset{X_{T}\in L_{+}^{0}}{\sup}E\left[U(X_{T})\right]-y\left(E\left[X_{T}Y_{T}\right]-x\right)\right)\right)\\ &\displaystyle =&\displaystyle \underset{y>0}{\inf}\left(\underset{Y_{T}\in D_{s}}{\inf}\left(\underset{X_{T}\in L_{+}^{0}}{\sup}\,\mathcal{L}(X_{T},Y_{T},y)\right)\right).\end{array} \end{aligned} $$

This completes the proof.

Remark 11.7 (Extension to Chap.12)

This same proof works with \(X_{T}\in \mathcal {C}(x)\subset L_{+}^{0}\) replaced by \((c,X_{T})\in \mathcal {C}(x)\subset \mathcal {L}_{+}^{0}\times L_{+}^{0}\) and \(Y\in \mathcal {D}_{s}\subset \mathcal {L}_{+}^{0}\), where \(v(x)=\underset {(c,X_{T})\in \mathcal {C}(x)}{\sup }E\left [\int _{0}^{T}U_{1}(c_{t})dt+U_{2}\left (X_{T}\right )\right ]\) and \(\tilde {v}(y)=\underset {Y\in \mathcal {D}_{s}}{\inf }\:E\left [\int _{0}^{T}\tilde {U}_{1}(yY_{t})dt+\tilde {U}_{2}(yY_{T})\right ]\). This completes the remark.

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jarrow, R.A. (2018). Incomplete Markets (Utility over Terminal Wealth). In: Continuous-Time Asset Pricing Theory. Springer Finance(). Springer, Cham. https://doi.org/10.1007/978-3-319-77821-1_11

Download citation

Publish with us

Policies and ethics