Skip to main content

Complete Markets (Utility over Terminal Wealth)

  • Chapter
  • First Online:
Continuous-Time Asset Pricing Theory

Part of the book series: Springer Finance ((SFTEXT))

  • 2327 Accesses

Abstract

This chapter studies an individual’s portfolio optimization problem. In this optimization, the solution differs depending on whether the market is complete or incomplete. This chapter investigates the optimization problem in a complete markets setting, and the next chapter analyzes incomplete markets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. R. Cont, P. Tankov, Financial Modelling with Jump Processes. Chapman & Hall/CRC Financial Mathematics Series (Chapman & Hall/CRC, New York, 2004)

    MATH  Google Scholar 

  2. R. Dana, M. Jeanblanc, Financial Markets in Continuous Time (Springer, Berlin, 2003)

    MATH  Google Scholar 

  3. J. Detemple, R. Garcia, M. Rindisbacher, Simulation methods for optimal portfolios, in Handbooks in OR & MS, ed. by J.R. Birge, V. Linetsky, vol. 15 (Elsevier B. V. Amsterdam, 2008)

    Google Scholar 

  4. G. Di Nunno, B. Oksendal, F. Proske, Malliavin Calculus for Levy Processes with Applications in Finance (Springer, Berlin, 2009)

    Book  Google Scholar 

  5. D. Duffie, Dynamic Asset Pricing Theory, 3rd edn. (Princeton University Press, Princeton, NJ, 2001)

    MATH  Google Scholar 

  6. O. Guler, Foundations of Optimization (Springer, New York, 2010)

    Book  Google Scholar 

  7. I. Karatzas and S. Shreve, Methods of Mathematical Finance (Springer, Berlin, 1999)

    MATH  Google Scholar 

  8. D. Kramkov, W. Schachermayer, The asymptotic elasticity of utility functions and optimal investment in incomplete markets. Ann. Appl. Probab. 9(3), 904–950 (1999)

    Article  MathSciNet  Google Scholar 

  9. R.C. Merton, Continuous Time Finance (Basil Blackwell, Cambridge, MA, 1990)

    MATH  Google Scholar 

  10. H. Pham, Continuous time Stochastic Control and Optimization with Financial Applications (Springer, Berlin, 2009)

    Book  Google Scholar 

  11. H. Royden, Real Analysis, 2nd edn. (MacMillan, New York, 1968)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Appendix

Appendix

1.1 Portfolio Weights

Define the portfolio weights as

$$\displaystyle \begin{aligned} \pi_{0}(t)=\frac{\alpha_{0}(t)\mathbb{B}_{t}}{\mathbb{X}_{t}}=\frac{\alpha_{0}(t)}{X_{t}}\qquad \mathrm{and} \end{aligned}$$
$$\displaystyle \begin{aligned} \pi_{i}(t)=\frac{\alpha_{i}(t)\mathbb{S}_{i}(t)}{\mathbb{X}_{t}}=\frac{\alpha_{i}(t)\left(\frac{\mathbb{S}_{i}(t)}{\mathbb{B}_{t}}\right)}{\frac{\mathbb{X}_{t}}{\mathbb{B}_{t}}}=\frac{\alpha_{i}(t)S_{i}(t)}{X_{t}} \end{aligned}$$

for all i = 1, …, n.

Note that in percentage holdings, the normalization versus non-normalization definitions are identical. Of course, all quantities in the denominator as assumed to be nonzero.

Define \(\pi _{t}=\pi (t)=(\pi _{1}(t),\ldots ,\pi _{n}(t))'\in \mathbb {R}^{n}\).

Note that π 0(t) + π t  ⋅1 = 1 where \(\mathbf {1}=(1,\ldots ,1)'\in \mathbb {R}^{n}.\)

The following gives the correspondences between the two formulations

$$\displaystyle \begin{aligned} \begin{array}{ccc} \pi_{i}(t)=\frac{\alpha_{i}(t)S_{i}(t)}{X_{t}} & \Leftrightarrow & \alpha_{i}(t)=\frac{\pi_{i}(t)X_{t}}{S_{i}(t)}\\ X_{t}=x+\int_{0}^{t}\frac{\pi_{u}}{S_{u}}X_{u}\cdot dS_{u} & \Leftrightarrow & X_{t}=x+\int_{0}^{t}\alpha_{u}\cdot dS_{u}\\ 1=\pi_{0}(t)+\pi_{t}\cdot\mathbf{1} & \Leftrightarrow & X_{t}=\alpha_{0}(t)+\alpha_{t}\cdot S_{t} \end{array} \end{aligned}$$

where \(\frac {\pi _{t}}{S_{t}}=\left (\frac {\pi _{1}(t)}{S_{1}(t)},\ldots ,\frac {\pi _{n}(t)}{S_{n}(t)}\right )'\in \mathbb {R}^{n}\) and (for later use) \(\frac {dS_{t}}{S_{t}}=\left (\frac {dS_{1}(t)}{S_{1}(t)},\ldots ,\frac {dS_{n}(t)}{S_{n}(t)}\right )' \in \mathbb {R}^{n}\).

Proof

The proof of the last identification is

$$\displaystyle \begin{aligned} \begin{array}{rcl}X_{t}&\displaystyle =&\displaystyle \alpha_{0}(t)+\alpha_{t}\cdot S(t)\quad \Leftrightarrow\\ \frac{X_{t}}{X_{t}}&\displaystyle =&\displaystyle \frac{\alpha_{0}(t)}{X_{t}}+\frac{\alpha_{t}\cdot S(t)}{X_{t}}\quad \Leftrightarrow\\ 1&\displaystyle =&\displaystyle \pi_{0}(t)+\pi_{t}\cdot1.\end{array} \end{aligned} $$

This completes the proof.

1.2 Proof of Expression (10.7)

For the use of this result in an incomplete market, the portfolio optimization Chap. 11, we note that the following proof holds for any Y T  ∈ D s as well.

Proof (Exchange of sup and E[ ⋅ ] Operator)

It is trivial that

$$\displaystyle \begin{aligned} \underset{X_{T}\in L_{+}^{0}}{\sup}\,E\left[U(X_{T})-yX_{T}Y_{T}\right]\leq E[\underset{X_{T}\in L_{+}^{0}}{\sup}\,(U(X_{T})-yX_{T}Y_{T})]. \end{aligned}$$

We want to prove the opposite inequality.

Since U is strictly concave, there exists a unique solution \(X_{T}^{*}\) to

$$\displaystyle \begin{aligned} \underset{X_{T}\in L_{+}^{0}}{\sup}\left[U(X_{T})-yX_{T}Y_{T}\right]=\left[U(X_{T}^{*})-yX_{T}^{*}Y_{T}\right]. \end{aligned}$$

But,

$$\displaystyle \begin{aligned} \underset{X_{T}\in L_{+}^{0}}{\sup}\,E\left[U(X_{T})-yX_{T}Y_{T}\right]\geq E\left[U(X_{T}^{*})-yX_{T}^{*}Y_{T}\right] \end{aligned}$$
$$\displaystyle \begin{aligned} =E[\underset{X_{T}\in L_{+}^{0}}{\sup}\,(U(X_{T})-yX_{T}Y_{T})], \end{aligned}$$

which completes the proof.

1.3 Proof of Expression (10.8)

For the use of this result in an incomplete market, the portfolio optimization Chap. 11, we note that the following proof holds for any Y T  ∈ D s as well.

Proof (Exchange of E[ ⋅ ] and Derivative)

Since the derivative exists, we use the left derivative.

$$\displaystyle \begin{aligned} \begin{array}{rcl} \underset{\triangle\rightarrow0}{\lim}\frac{\tilde{U}((y{+}\triangle)Y_{T}){-}\tilde{U}(yY_{T})}{\triangle}&\displaystyle =&\displaystyle \underset{\triangle Y_{T}\rightarrow0}{\lim}\frac{\tilde{U}((y{+}\triangle)Y_{T}){-}\tilde{U}(yY_{T})}{(y{+}\triangle)Y_{T}{-}yY_{T}}\cdot\underset{\triangle\rightarrow0}{\lim}\frac{(y{+}\triangle)Y_{T}{-}yY_{T}}{\triangle}\\ &\displaystyle =&\displaystyle \underset{\triangle Y_{T}\rightarrow0}{\lim}\frac{\tilde{U}((y+\triangle)Y_{T})-\tilde{U}(yY_{T})}{(y+\triangle)Y_{T}-yY_{T}}\cdot Y_{T}\\ &\displaystyle =&\displaystyle \underset{\triangle\rightarrow0}{\lim}\tilde{U}'(\xi Y_{T})Y_{T}\ \text{a.s.}\ \mathbb{P},\ \text{where}\ \varDelta<0. \end{array} \end{aligned} $$

The last equality follows from the mean value theorem (Guler [66, p. 3]), i.e. there exists an ξ ∈ [y + Δ, y] such that

$$\displaystyle \begin{aligned}\tilde{U}((y+\triangle)Y_{T})-\tilde{U}(yY_{T})=\tilde{U}'(\xi Y_{T})\left[(y+\triangle)Y_{T}-yY_{T}\right].\end{aligned}$$

Thus, \(\frac {\partial E[\tilde {U}(yY_{T})]}{\partial y}=\underset {\triangle \rightarrow 0}{\lim }\frac {E\left [\tilde {U}((y+\triangle )Y_{T})-\tilde {U}(yY_{T})\right ]}{\triangle }=\underset {\triangle \rightarrow 0}{\lim }E[\tilde {U}'(\xi Y_{T})Y_{T}]\).

Now \(E[\tilde {U}(yY_{T})]<\infty \) because \(\tilde {v}(y)<\infty \) and Y T is the supermartingale deflator such that \(\tilde {v}(y)=E[\tilde {U}(yY_{T})]\).

By Kramkov and Schachermayer [126, Lemma 6.3 (iv) and (iii), p. 944], \(AE\left (U\right )<1\) implies there exists a constant C and z 0 > 0 such that

$$\displaystyle \begin{aligned}-\tilde{U}'(z)z<C\tilde{U}(z)\ \text{for}\ 0<z\leq z_{0},\end{aligned}$$

and

$$\displaystyle \begin{aligned}\tilde{U}(\mu z)<K(\mu)\tilde{U}(z)\ \text{for}\ 0<\mu<1\ \text{and}\ 0<z\leq z_{0},\end{aligned}$$

where K(μ) is a constant depending upon μ.

Combined, \(-\tilde {U}'(\mu z)\mu z<C\tilde {U}(\mu z)<CK(\mu )\tilde {U}(z)\) implies that there exists a z 0 > 0 such that

$$\displaystyle \begin{aligned}-\tilde{U}'(\mu z)\mu z<\bar{K}(\mu)\tilde{U}(z)\ \text{for}\ 0<z\leq z_{0}\end{aligned}$$

where \(\bar {K}(\mu )\) is a constant depending upon μ for 0 < μ < 1.

Letting z = yY T and \(\mu =\frac {\xi }{y}<1\), because Δ < 0 so that ξ < y. Then,

$$\displaystyle \begin{aligned} -\tilde{U}'(\xi Y_{T})Y_{T}<\frac{1}{\xi}\bar{K}(\frac{\xi}{y})\tilde{U}(yY_{T}). \end{aligned}$$

Since the right side is \(\mathbb {P}\)-integrable, using the dominated convergence theorem,

$$\displaystyle \begin{aligned} \underset{\triangle\rightarrow0}{\lim}E[\tilde{U}'(\xi Y_{T})Y_{T}]=E[\underset{\triangle\rightarrow0}{\lim}\tilde{U}'(\xi Y_{T})Y_{T}]=E[\tilde{U}'(yY_{T})Y_{T}]. \end{aligned}$$

The last equality follows from the continuity of \(\tilde {U}'(\cdot )\). The continuity of \(\tilde {U}'(\cdot )\) follows because \(\tilde {U}(\cdot )\) is strictly convex, hence \(\tilde {U}'(\cdot )\) is a strictly increasing function, which is therefore differentiable a.s. \(\mathbb {P}\) (see Royden [160, Theorem 2, p. 96]), and hence continuous. This completes the proof.

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jarrow, R.A. (2018). Complete Markets (Utility over Terminal Wealth). In: Continuous-Time Asset Pricing Theory. Springer Finance(). Springer, Cham. https://doi.org/10.1007/978-3-319-77821-1_10

Download citation

Publish with us

Policies and ethics