Skip to main content

Nanosilicon Particle Effects on Physiology and Growth of Woody Plants

  • Chapter
  • First Online:
Phytotoxicity of Nanoparticles

Abstract

Nanoparticles can influence key physiological processes including seed germination, photosynthesis, and thereby plant growth and yield. Despite several studies have addressed the effects of nanoparticles on crops, data for woody plant species is still scarce. In this report, the effects of silicon dioxide nanoparticles (SiO2 NPs) application, as potentially toxic elements, on physiological performance of 1-year-old woody plants, namely, hawthorn (Crataegus aronia L.) and mahaleb (Prunus mahaleb L.), were evaluated. Plants were irrigated with different concentrations of SiO2 NPs (0, 10, 50, and 100 mg L−1) for 45 days, and gas exchange parameters, relative water content (RWC), xylem water potential, growth, biomass allocation, and nutrient balance were recorded. Si concentration in leaves and its presence over the root surface were analyzed by XRF and SEM, respectively. Results showed diminishing RWC and xylem water potential with the increasing concentrations of SiO2 NPs, thereby confirming detrimental effects of SiO2 NPs irrigation on water status of the plants. Despite the poorer water status, photosynthesis rate (A), stomatal conductance (g s), and transpiration rate (E) were not affected by SiO2 NPs treatments but improved marginally in both species. Overall, the application of SiO2 NPs slightly enhanced plant growth in both species, more evidently in hawthorn, particularly because roots were benefited in growth and length. The presence of SiO2 NPs on the root surfaces was pragmatic in both the species using SEM. XRF analysis of the leaf tissue confirmed that Si concentration in leaf tissues increased at increasing levels of SiO2 NPs, whereas concentrations of examined macronutrients, i.e., nitrogen, phosphorus, and potassium, remain unaffected at increasing levels of SiO2 NPs application. In conclusion, although water status of the woody plants was slightly disrupted by SiO2 NPs, such negative effects were not reflected on plant physiological performance. Therefore, the results should be carefully interpreted as current research reveals that SiO2 NPs application to a certain extent can (contrary to expected) aid slight improvement in leaf physiological performance as well as in root elongation, finally contributing to enhanced plant growth. However, toxic effects, as exhibited by exposure of longer duration and/or higher concentrations of SiO2 NPs, cannot be ruled out in plants, a topic that unavoidably merits further experimental investigation in woody species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adatia MH, Besford RT (1986) The effects of silicon on cucumber plants grown in recirculating nutrient solution. Ann Bot 58:343–351

    Article  CAS  Google Scholar 

  • Bao-shan L, Shao-qi D, Chun-hui L et al (2004) Effect of TMS (nanostructured silicon dioxide) on growth of Changbai larch seedlings. J For Res 15(2):138–140

    Article  Google Scholar 

  • Basile-Doelsch I, Meunier JD, Parron C (2005) Another continental pool in the terrestrial silicon cycle. Nature 433:399–402

    Article  CAS  PubMed  Google Scholar 

  • Braunack MV (1995) Effect of aggregate size and soil water content on emergence of soybean (Glycine max L. Merr.) and maize (Zea mays L.). Soil Tillage Res 33:149–161

    Article  Google Scholar 

  • Chalmardi ZK, Abdolzadeh A, Sadeghipour HR (2014) Silicon nutrition potentiates the antioxidant metabolism of rice plants under iron toxicity. Acta Physiol Plant 36(2):493–502

    Article  CAS  Google Scholar 

  • Epstein E (1994) The anomaly of silicon in plant biology. Proc Natl Acad Sci 91:11–17

    Article  CAS  PubMed  Google Scholar 

  • Epstein E, Bloom AJ (2005) Mineral nutrition of plants: principles and perspectives. Sinauer Associates, Sunderland

    Google Scholar 

  • Falco WF, Botero ER, Falcão EA et al (2011) In vivo observation of chlorophyll fluorescence quenching induced by gold nano particles. J Photochem Photobiol A 225:65–71

    Article  CAS  Google Scholar 

  • Gautam S, Misra P, Shukla PK et al (2016a) Effect of copper oxide nanoparticle on the germination, growth and chlorophyll in soybean (Glycine max L.). Vegetos 29:157–160

    Google Scholar 

  • Gautam S, Misra P, Shukla PK et al (2016b) Effect of engineered iron-oxide and copper oxide nanoparticle on the germination and growth on soybean (Glycine max L.). Int J Plant Sci 11(1):51–54

    Article  Google Scholar 

  • Giraldo JP, Landry MP, Faltermeier SM et al (2014) Plant nano bionics approach to augment photosynthesis and biochemical sensing. Nat Mater 13:400–408

    Article  CAS  PubMed  Google Scholar 

  • Haghighi M, Pessarakli M (2013) Influence of silicon and nano-silicon on salinity tolerance of cherry tomatoes (Solanum lycopersicum L.) at early growth stage. Sci Hortic 161:111–117

    Article  CAS  Google Scholar 

  • Hodson MJ, White PJ, Mead A et al (2005) Phylogenetic variation in the silicon composition of plants. Ann Bot 96(6):1027–1046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karimi J, Mohsenzadeh S (2016) Effects of silicon oxide nanoparticles on growth and physiology of wheat seedlings. Russ J Plant Physiol 63(1):119–123

    Article  CAS  Google Scholar 

  • Khot LR, Sankaran S, Maja JM et al (2012) Applications of nanomaterials in agricultural production and crop protection: a review. Crop Prot 35:64–70

    Article  CAS  Google Scholar 

  • Le VN, Rui Y, Gui X et al (2014) Uptake, transport, distribution and bio-effects of SiO2 nanoparticles in Bt-transgenic cotton. J Nanobiotechnol 12:50

    Article  CAS  Google Scholar 

  • Li P, Song A, Li Z et al (2015) Silicon ameliorates manganese toxicity by regulating both physiological processes and expression of genes associated with photosynthesis in rice (Oryza sativa L.). Plant Soil 397(1-2):289–301

    Article  CAS  Google Scholar 

  • Lin D, Xing B (2008) Root uptake and phytotoxicity of ZnO nanoparticles. Environ Sci Technol 42:5580–5585

    Article  CAS  PubMed  Google Scholar 

  • Lin S, Reppert J, Hu Q et al (2009) Uptake, translocation, and transmission of carbon nano materials in rice plants. Small 5:1128–1132

    Article  CAS  PubMed  Google Scholar 

  • Ma JF (2004) Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. Soil Sci Plant Nutr 50(1):11–18

    Article  CAS  Google Scholar 

  • Ma JF, Yamaji N (2006) Silicon uptake and accumulation in higher plants. Trends Plant Sci 11:392–397

    Article  CAS  Google Scholar 

  • Ma J, Yamaji N (2008) Functions and transport of silicon in plants. Cell Mol Life Sci 65:3049–3057

    Article  CAS  Google Scholar 

  • Ma JF, Yamaji N (2015) A cooperative system of silicon transport in plants. Trends Plant Sci 20(7):435–442

    Article  CAS  Google Scholar 

  • Ma JF, Mitani N, Nagao S et al (2004) Characterization of the silicon uptake system and molecular mapping of the silicon transporter gene in rice. Plant Physiol 136:3284–3289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matichenkov VV, Bocharnikova EA, Kosobryukhov AA et al (2008) Mobile forms of silicon in plants. Dokl Biol Sci 418(1):39–40

    Article  CAS  PubMed  Google Scholar 

  • Misra P, Shukla PK, Pramanik K et al (2016) Nanotechnology for crop improvement. In: Kole C, Sakthi Kumar D, Khodakovskaya MV (eds) Plant nanotechnology: principles and practices. Springer, Cham, pp 219–256

    Chapter  Google Scholar 

  • Monica RC, Cremonini R (2009) Nanoparticles and higher plants. Caryologia 62:161–165

    Article  Google Scholar 

  • Nair R, Varghese SH, Nair BG et al (2010) Nanoparticulate material delivery to plants. Plant Sci 179(3):154–163

    Article  CAS  Google Scholar 

  • Noji T, Kamidaki C, Kawakami K et al (2011) Photosynthetic oxygen evolution in mesoporous silica material: adsorption of photosystem II reaction center complex into 23 nm nanopores in SBA. Langmuir 27(2):705–713

    Article  CAS  PubMed  Google Scholar 

  • Okuda A, Takahashi E (1965) The role of silicon. In: The mineral nutrition of the rice plant, Proceedings of symposium of the International Rice Research Institute, pp 123–146

    Google Scholar 

  • Parveen N, Ashraf M (2010) Role of silicon in mitigating the adverse effects of salt stress on growth and photosynthetic attributes of two maize (Zea Mays L.) cultivars grown hydroponically. Pak J Bot 42(3):1675–1684

    CAS  Google Scholar 

  • Rad JS, Karimi J, Mohsenzadeh S et al (2014) Evaluating SiO2 nano particles effects on developmental characteristic and photosynthetic pigment contents of Zea mays L. Bull Environ Pharmaco Life Sci 3:194–201

    Google Scholar 

  • Rajoriya P, Misra P, Shukla PK et al (2016) Light-regulatory effect on the phytosynthesis of silver nanoparticles using aqueous extract of garlic (Allium sativum) and onion (Allium cepa) bulb. Curr Sci 111(8):1364–1368

    Article  CAS  Google Scholar 

  • Rawson HM, Long MJ, Munns R (1988) Growth and development in NaCl-treated plants. I. Leaf Na+ and Cl-concentrations do not determine gas exchange of leaf blades in barley. Funct Plant Biol 15(4):519–527

    CAS  Google Scholar 

  • Sabaghnia N, Janmohammadi M (2015) Effect of nano-silicon particles application on salinity tolerance in early growth of some lentil genotypes/Wpływ nanocząstek krzemionki na tolerancję zasolenia we wczesnym rozwoju niektórych genotypów soczewicy. Ann UMCS Biol 69(2):39–55

    Google Scholar 

  • Samuels AL, Glass AD, Ehret DL et al (1993) The effects of silicon supplementation on cucumber fruit: changes in surface characteristics. Ann Bot 72(5):433–440

    Article  CAS  Google Scholar 

  • Shi Y, Wang Y, Flowers TJ et al (2013) Silicon decreases chloride transport in rice (Oryza sativa L.) in saline conditions. J Plant Physiol 170(9):847–853

    Article  CAS  Google Scholar 

  • Shukla PK, Misra P, Kole C (2016) Uptake, translocation, accumulation, transformation, and generational transmission of nanoparticles in plants. In: Kole C, Sakthi Kumar D, Khodakovskaya MV (eds) Plant nanotechnology: principles and practices. Springer, Cham, pp 183-218

    Chapter  Google Scholar 

  • Siddiqui MH, Al-Whaibi MH, Faisal M et al (2014) Nano-silicon dioxide mitigates the adverse effects of salt stress on Cucurbita pepo L. Environ Toxicol Chem 33(11):2429–2437

    Article  CAS  PubMed  Google Scholar 

  • Singh A, Singh NB, Hussain I et al (2015) Plant-nanoparticle interaction: an approach to improve agricultural practices and plant productivity. Int J Pharm Sci Invent 4(8):25–40

    CAS  Google Scholar 

  • Sommer M, Kaczorek D, Kuzyakov Y et al (2006) Silicon pools and fluxes in soils and landscapes—a review. J Plant Nutr Soil Sci 169(3):310–329

    Article  CAS  Google Scholar 

  • Song A, Li P, Fan F et al (2014) The effect of silicon on photosynthesis and expression of its relevant genes in rice (Oryza sativa L.) under high-zinc stress. PLoS One 9(11):e113782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun D, Hussain HI, Yi Z et al (2016) Mesoporous silica nanoparticles enhance seedling growth and photosynthesis in wheat and lupin. Chemosphere 152:81–91

    Article  CAS  PubMed  Google Scholar 

  • Suriyaprabha R, Karunakaran G, Yuvakkumar R et al (2012a) Growth and physiological responses of maize (Zea mays L.) to porous silica nanoparticles in soil. J Nanopart Res 14(12):1–4

    Article  CAS  Google Scholar 

  • Suriyaprabha R, Karunakaran G, Yuvakkumar R et al (2012b) Silica nanoparticles for increased silica availability in maize (Zea mays L.) seeds under hydroponic conditions. Curr Nanosci 8(6):902–908

    Article  CAS  Google Scholar 

  • Tamai K, Ma JF (2008) Reexamination of silicon effects on rice growth and production under field conditions using a low silicon mutant. Plant Soil 307(1-2):21–27

    Article  CAS  Google Scholar 

  • Walker CD, Lance RC (1991) Silicon accumulation and 13C composition as indices of water-use efficiency in barley cultivars. Funct Plant Biol 18(4):427–434

    CAS  Google Scholar 

  • Wang P, Grimm B (2015) Organization of chlorophyll biosynthesis and insertion of chlorophyll into the chlorophyll-binding proteins in chloroplasts. Photosynth Res 126(2–3):189–202

    Article  CAS  PubMed  Google Scholar 

  • Xie Y, Li B, Zhang Q et al (2011) Effects of nano-TiO2 on photosynthetic characteristics of Indocalamus barbatus. J Northeast For Univ 39:22–25

    CAS  Google Scholar 

  • Xie Y, Li B, Zhang Q et al (2012) Effects of nano-silicon dioxide on photosynthetic fluorescence characteristics of Indocalamus barbatus McClure. J Nanjing Forest Univ (Nat Sci Ed) 2:59–63

    Google Scholar 

  • Zarafshar M, Akbarinia M, Askari H et al (2015) Toxicity assessment of SiO2 nanoparticles to pear seedlings. Int J Nanosci Nanotechnol 11(1):13–22

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehrdad Zarafshar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ashkavand, P. et al. (2018). Nanosilicon Particle Effects on Physiology and Growth of Woody Plants. In: Faisal, M., Saquib, Q., Alatar, A., Al-Khedhairy, A. (eds) Phytotoxicity of Nanoparticles. Springer, Cham. https://doi.org/10.1007/978-3-319-76708-6_12

Download citation

Publish with us

Policies and ethics