Skip to main content

Topology of Minimal Surface Biophotonic Nanostructures in Arthropods

  • Chapter
  • First Online:
The Role of Topology in Materials

Part of the book series: Springer Series in Solid-State Sciences ((SSSOL,volume 189))

Abstract

Structural colors, including many vivid (ultra)violets, blues and greens are quite ubiquitous in animals and form an important aspect of their physical appearance. These colors, which have evolved over millions of years of evolution for a persistent color production function, are often used in camouflage and signaling, including in mate-choice and as warning coloration. By contrast to pigment or dye-based colors, these fade-proof colors are usually produced by the interference of light by a stunning diversity of nanostructures in the animal integument, none as spectacular as those found in certain arthropods. Recently, Saranathan et al. (Nano Lett 15:3735–3742, 2015 [1]) diagnosed the photonic nanostructure present in the cuticular scales and setae of 85 genera in 5 orders of terrestrial arthropods, using synchrotron small angle X-ray scattering (SAXS) and electron microscopy. We reported a rich diversity of nanostructures rivalling those seen in the phase behavior of amphiphilic surfactants, block copolymer, or lyotropic lipid-water systems, including ordered and disordered triply-periodic bicontinuous nanoporous networks, perforated lamellar, inverse hexagonal columnar and close-packed sphere morphologies. However, all these diverse nanostructures can be decomposed into their constituent topology, characterized by either negative, zero or positive Gaussian curvature, but constant mean curvature—namely, the saddle/hyperboloid (Schwarz’s Primitive P, Schwarz’s Diamond D, Schoen’s Gyroid G) and lamellar-helicoid (Riemann’s) surfaces, cylinder and sphere. Intriguingly, both the triply periodic saddle (P, D, and G) and the singly periodic Riemann surfaces are characterized by zero mean curvature, i.e., the building blocks of the corresponding nanostructures are all based on minimal surfaces. In light of this, I review the nanostructure, development, and the biomimetic and bioinspiration potential of these self-assembled minimal surface biophotonic nanostructures, when the large-scale, defect-free synthesis of mesoscopic nanostructures with the desired symmetry at optically relevant length scales is not currently facile.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. V. Saranathan, A.E. Seago, S. Narayanan, A. Sandy, S.G.J. Mochrie, E.R. Dufresne, H. Cao, C.O. Osuji, R.O. Prum, Nano Lett. 15, 3735–3742 (2015)

    Article  ADS  Google Scholar 

  2. D.L. Fox, Animal Biochromes and Structural Colors (Univ. California Press, Berkeley, CA, 1976)

    Google Scholar 

  3. E. Hecht, Optics, 2nd edn. (Addison-Wesley Publishing, Reading, MA, 1987)

    Google Scholar 

  4. H.M. Fox, G. Vevers, The Nature of Animal Colors (Macmillan, New York, 1960)

    Google Scholar 

  5. R.O. Prum, in Bird Coloration: Mechanisms, vol. I: Mechanisms and Measurements (Harvard University Press, Boston, 2006)

    Google Scholar 

  6. P. Vukusic, J.R. Sambles, Nature 424, 852–855 (2003)

    Article  ADS  Google Scholar 

  7. S. Kinoshita, S. Yoshioka, J. Miyazaki, Rep. Prog. Phys. 71, 076401 (2008)

    Article  ADS  Google Scholar 

  8. M. Srinivasarao, Chem. Rev. 99, 1935–1961 (1999)

    Article  Google Scholar 

  9. A.E. Seago, P. Brady, J.-P. Vigneron, T.D. Schultz, J. R. Soc. Interface 6, S165–S184 (2009)

    Article  Google Scholar 

  10. L.M. Mathger, E.J. Denton, N.J. Marshall, R.T. Hanlon, J. R. Soc. Interface 6, S149–S163 (2009)

    Article  Google Scholar 

  11. R.O. Prum, T. Quinn, R.H. Torres, J. Exp. Biol. 209, 749–765 (2006)

    Article  Google Scholar 

  12. A.E. Seago, V. Saranathan, in Nature’s Nanostructures (Pan Stanford Publishing, Singapore, 2012)

    Google Scholar 

  13. G.E. Hill, K.J. McGraw, Bird Coloration, Volume 2 Function and Evolution (Harvard University Press, Cambridge, MA, 2006)

    Google Scholar 

  14. A. Sweeney, C. Jiggins, S. Johnsen, Nature 423, 31–32 (2003)

    Article  ADS  Google Scholar 

  15. R.D. Pope, H.E. Hinton, Biol. J. Linn. Soc. 9, 331–348 (1977)

    Article  Google Scholar 

  16. M.E. McNamara, V. Saranathan, E.R. Locatelli, H. Noh, D.E. Briggs, P.J. Orr, H. Cao, J. R. Soc. Interface 11, 20140736 (2014)

    Article  Google Scholar 

  17. K.L. Prudic, C. Jeon, H. Cao, A. Monteiro, Science 331, 73–75 (2011)

    Article  ADS  Google Scholar 

  18. H.L. Leertouwer, B.D. Wilts, D.G. Stavenga, Opt. Exp. 19, 24061–24066 (2011)

    Article  ADS  Google Scholar 

  19. B.T. Hallam, A.G. Hiorns, P. Vukusic, Appl. Optics 48, 3243–3249 (2009)

    Article  ADS  Google Scholar 

  20. J. Zi, X. Yu, Y. Li, X. Hu, C. Xu, X. Wang, X. Liu, R. Fu, Proc. Natl. Acad. Sci. USA 100, 12576–12578 (2003)

    Article  ADS  Google Scholar 

  21. H. Yin, B. Dong, X. Liu, T. Zhan, L. Shi, J. Zi, E. Yablonovitch, Proc. Natl. Acad. Sci. USA 109, 10798–10801 (2012)

    Article  ADS  Google Scholar 

  22. J.A. Dolan, B.D. Wilts, S. Vignolini, J.J. Baumberg, U. Steiner, T.D. Wilkinson, Adv. Opt. Mater. 3, 12–32 (2015)

    Article  Google Scholar 

  23. B.D. Wilts, I.J. N, D.G. Stavenga, BMC Evol. Biol. 14, 160 (2014)

    Google Scholar 

  24. B.D. Wilts, X. Sheng, M. Holler, A. Diaz, M. Guizar-Sicairos, J. Raabe, R. Hoppe, S.H. Liu, R. Langford, O.D. Onelli, D. Chen, S. Torquato, U. Steiner, C.G. Schroer, S. Vignolini, A. Sepe, Adv. Mater. (2017). (In Press)

    Google Scholar 

  25. A.R. Parker, H.E. Townley, Nat. Nanotechnol. 2, 347–353 (2007)

    Article  ADS  Google Scholar 

  26. R.A. Potyrailo, H. Ghiradella, A. Vertiatchikh, K. Dovidenko, J.R. Cournoyer, E. Olson, Nat. Photon. 1, 123–128 (2007)

    Article  ADS  Google Scholar 

  27. M. Kolle, P.M. Salgard-Cunha, M.R.J. Scherer, F.M. Huang, P. Vukusic, S. Mahajan, J.J. Baumberg, U. Steiner, Nat. Nanotechnol. 5, 511–515 (2010)

    Article  ADS  Google Scholar 

  28. J.W. Galusha, L.R. Richey, M.R. Jorgensen, J.S. Gardner, M.H. Bartl, J. Mater. Chem. 20, 1277–1284 (2010)

    Article  Google Scholar 

  29. E. Kreit, L.M. Mathger, R.T. Hanlon, P.B. Dennis, R.R. Naik, E. Forsythe, J. Heikenfeld, J. R. Soc. Interface 10, 20120601 (2012)

    Article  Google Scholar 

  30. R.A. Potyrailo, T.A. Starkey, P. Vukusic, H. Ghiradella, M. Vasudev, T. Bunning, R.R. Naik, Z. Tang, M. Larsen, T. Deng, S. Zhong, M. Palacios, J.C. Grande, G. Zorn, G. Goddard, S. Zalubovsky, Proc. Natl. Acad. Sci. USA 110, 15567–15572 (2013)

    Google Scholar 

  31. L. Lu, L. Fu, J.D. Joannopoulos, M. Soljacic, Nat. Photon. 7, 294–299 (2013)

    Article  ADS  Google Scholar 

  32. M. Xiao, Y. Li, M.C. Allen, D.D. Deheyn, X. Yue, J. Zhao, N.C. Gianneschi, M.D. Shawkey, A. Dhinojwala, ACS Nano 9, 5454–5460 (2015)

    Article  Google Scholar 

  33. M.D. Turner, M. Saba, Q. Zhang, B.P. Cumming, G.E. Schroder-Turk, M. Gu, Nat. Photon. 7, 801–805 (2013)

    Article  ADS  Google Scholar 

  34. V. Saranathan, J.D. Forster, H. Noh, S.F. Liew, S.G.J. Mochrie, H. Cao, E.R. Dufresne, R.O. Prum, J. R. Soc. Interface 9, 2563–2580 (2012)

    Article  Google Scholar 

  35. V. Saranathan, C.O. Osuji, S.G.J. Mochrie, H. Noh, S. Narayanan, A. Sandy, E.R. Dufresne, R.O. Prum, Proc. Natl. Acad. Sci. USA 107, 11676–11681 (2010)

    Article  ADS  Google Scholar 

  36. A. Singer, L. Boucheron, S.H. Dietze, K.E. Jensen, D. Vine, I. McNulty, E.R. Dufresne, R.O. Prum, S.G.J. Mochrie, O.G. Shpyrko, Sci. Adv. 2, e1600149 (2016)

    Article  ADS  Google Scholar 

  37. B. Winter, B. Butz, C. Dieker, G.E. Schroder-Turk, K. Mecke, E. Spiecker, Proc. Natl. Acad. Sci. USA 112, 12911–12916 (2015)

    Article  ADS  Google Scholar 

  38. B.D. Wilts, B. Apeleo Zubiri, M.A. Klatt, B. Butz, M.G. Fischer, S.T. Kelly, E. Spiecker, U. Steiner, G.E. Schroder-Turk, Sci Adv 3, e1603119 (2017)

    Article  ADS  Google Scholar 

  39. R.O. Prum, E.R. Dufresne, T. Quinn, K. Waters, J. R. Soc. Interface 6, S253–S265 (2009)

    Article  Google Scholar 

  40. H. Ghiradella, J. Morph. 202, 69–88 (1989)

    Article  Google Scholar 

  41. R. Maia, R.H. Macedo, M.D. Shawkey, J. R. Soc. Interface 9, 734–743 (2012)

    Article  Google Scholar 

  42. D.G. DeMartini, D.V. Krogstad, D.E. Morse, Proc. Natl. Acad. Sci. USA 110, 2552–2556 (2013)

    Article  ADS  Google Scholar 

  43. E.R. Dufresne, H. Noh, V. Saranathan, S.G.J. Mochrie, H. Cao, R.O. Prum, Soft Mater. 5, 1792–1795 (2009)

    Article  ADS  Google Scholar 

  44. M.D. Shawkey, L. D’Alba, M. Xiao, M. Schutte, R. Buchholz, J. Morphol. 276, 378–384 (2015)

    Article  Google Scholar 

  45. A.P. Hynninen, J.H. Thijssen, E.C. Vermolen, M. Dijkstra, A. van Blaaderen, Nat. Mater. 6, 202–205 (2007)

    Article  ADS  Google Scholar 

  46. S. Juodkazis, L. Rosa, S. Bauerdick, L. Peto, R. El-Ganainy, S. John, Opt. Express 19, 5802–5810 (2011)

    Article  ADS  Google Scholar 

  47. B.A.M. Urbas, M. Maldovan, P. Derege, E.L. Thomas, Adv. Mater. 14, 1850–1853 (2002)

    Article  Google Scholar 

  48. B. Hatton, L. Mishchenko, S. Davis, K.H. Sandhage, J. Aizenberg, Proc. Natl. Acad. Sci. USA 107, 10354–10359 (2010)

    Article  ADS  Google Scholar 

  49. S. Vignolini, N.A. Yufa, P.S. Cunha, S. Guldin, I. Rushkin, M. Stefik, K. Hur, U. Wiesner, J.J. Baumberg, U. Steiner, Adv. Mater. 24, OP23-27 (2012)

    Google Scholar 

  50. M. Stefik, S. Guldin, S. Vignolini, U. Wiesner, U. Steiner, Chem. Soc. Rev. 44, 5076–5091 (2015)

    Article  Google Scholar 

  51. M.D. Shawkey, V. Saranathan, H. Palsdottir, J. Crum, M.H. Ellisman, M. Auer, R.O. Prum, J. R. Soc. Interface 6, S213–S220 (2009)

    Article  Google Scholar 

  52. L. D’Alba, V. Saranathan, J.A. Clarke, J.A. Vinther, R.O. Prum, M.D. Shawkey, Biol. Lett. 7, 543–546 (2011)

    Article  Google Scholar 

  53. H. Durrer, Biology of the Integument 2: Vertebrates (Springer, Berlin, 1986)

    Chapter  Google Scholar 

  54. J. Dyck, Proc. Int. Ornith. Cong. 16, 426–437 (1976)

    Google Scholar 

  55. S.T. Rohrlich, J. Cell Biol. 62, 295–304 (1974)

    Article  Google Scholar 

  56. P.J. Herring, Comp. Biochem. Physiol. A 109, 513–546 (1994)

    Article  ADS  Google Scholar 

  57. E.J. Denton, J.A.C. Nicol, J. Marine Biol. Assoc. UK 46, 685–722 (1966)

    Article  Google Scholar 

  58. S. Gupta, A. Saxena, MRS Bull. 39, 265–279 (2014)

    Article  Google Scholar 

  59. S. Hyde, The Language of Shape: The Role of Curvature in Condensed Matter–Physics, Chemistry, and Biology (Elsevier, Amsterdam, Netherlands, 1997)

    Google Scholar 

  60. V.N. Manoharan, Science 349, 1253751 (2015)

    Article  Google Scholar 

  61. J.D. Joannopoulos, S.G. Johnson, J.N. Winn, R.D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd edn. (Princeton University Press, New Jersey, 2008)

    MATH  Google Scholar 

  62. R. Maia, D.R. Rubenstein, M.D. Shawkey, Proc. Natl. Acad. Sci. USA 110, 10687–10692 (2013)

    Article  ADS  Google Scholar 

  63. R. Maia, D.R. Rubenstein, M.D. Shawkey, Evolution 70, 1064–1079 (2016)

    Article  Google Scholar 

  64. I.W. Hamley, The Physics of Block Copolymers (Oxford University Press, Oxford, 1998)

    Google Scholar 

  65. F.S. Bates, G.H. Fredrickson, Phys. Today 52, 32–38 (1999)

    Article  Google Scholar 

  66. E.L. Thomas, Science 286, 1307 (1999)

    Article  Google Scholar 

  67. N. Hadjichristidis, S. Pispas, G. Floudas, in Block Copolymers: Synthetic Strategies, Physical Properties, and Applications (Wiley, Hoboken, NJ, 2003)

    Google Scholar 

  68. K. Fontell, Coll. Poly. Sci. 268, 264–285 (1990)

    Article  Google Scholar 

  69. V. Luzzati, P.A. Spegt, Nature 215, 701–704 (1967)

    Article  ADS  Google Scholar 

  70. S.M. Gruner, P.R. Cullis, M.J. Hope, C.P. Tilcock, Annu. Rev. Biophys. Biophys. Chem. 14, 211–238 (1985)

    Article  Google Scholar 

  71. T. Hahn, The 230 space groups, in IUCr International Tables for Crystallography (Springer, 2006)

    Google Scholar 

  72. A. Ingram, A. Parker, Phil. Trans. R. Soc. B: Biol. Sci. 363, 2465–2480 (2008)

    Article  Google Scholar 

  73. S. Förster, A. Timmann, C. Schellbach, A. Frömsdorf, A. Kornowski, H. Weller, S.V. Roth, P. Lindner. Nat. Mater. 6, 888–893 (2007)

    Article  ADS  Google Scholar 

  74. J.W. Galusha, L.R. Richey, J.S. Gardner, J.N. Cha, M.H. Bartl, Phys. Rev. E 77, 2–5 (2008)

    Article  Google Scholar 

  75. J. Jung, J. Lee, H.-W. Park, T. Chang, H. Sugimori, H. Jinnai, Macromolecules 47, 8761–8767 (2014)

    Article  ADS  Google Scholar 

  76. M.E. Vigild, K. Almdal, K. Mortensen, I.W. Hamley, J.P.A. Fairclough, A.J. Ryan, Macromolecules 31, 5702–5716 (1998)

    Article  ADS  Google Scholar 

  77. Y. Bouligand, Tiss. Cell 4, 189–217 (1972)

    Article  Google Scholar 

  78. B.D. Wilts, H.L. Leertouwer, D.G. Stavenga, J. R. Soc. Interface 6, S185–S192 (2009)

    Article  Google Scholar 

  79. H. Ghiradella, Advances in Insect Physiology (Academic Press, 2010)

    Google Scholar 

  80. Z. Bálint, K. Kertész, G. Piszter, Z. Vértesy, L.P. Biró, J. R. Soc. Interface 9, 1745–1756 (2012)

    Article  Google Scholar 

  81. G.C. Shearman, O. Ces, R.H. Templer, J.M. Seddon, J. Phys.-Condens. Mater. 18, S1105–S1124 (2006)

    Article  ADS  Google Scholar 

  82. W. Helfrich, Z. Naturforsch. C 28, 693–703 (1973)

    Google Scholar 

  83. L. Golubovic, Phys. Rev. E 50, 2419–2422 (1994)

    Article  ADS  Google Scholar 

  84. E.A. Matsumoto, R.D. Kamien, C.D. Santangelo, Interf. Focus 2, 617–622 (2012)

    Article  Google Scholar 

  85. M. Terasaki, T. Shemesh, N. Kasthuri, R.W. Klemm, R. Schalek, K.J. Hayworth, A.R. Hand, M. Yankova, G. Huber, J.W. Lichtman, T.A. Rapoport, M.M. Kozlov, Cell 154, 285–296 (2013)

    Article  Google Scholar 

  86. C. Delaunay, J. Math. Pures et Appl. 6, 309–320 (1841)

    Google Scholar 

  87. N. Kapouleas, Ann. Math. 131, 239–330 (1990)

    Article  MathSciNet  Google Scholar 

  88. M. Wohlgemuth, N. Yufa, J. Hoffman, E.L. Thomas, Macromolecules 34, 6083–6089 (2001)

    Article  ADS  Google Scholar 

  89. A.H. Schoen, Interface Focus 2, 658–668 (2012)

    Article  Google Scholar 

  90. H.A. Schwarz, Gesammelte Mathematische Abhandlungen (Springer, Berlin, 1890)

    Book  MATH  Google Scholar 

  91. A.H. Schoen, Infinite Periodic Minimal Surfaces Without Self-intersections (NASA Research Center, Cambridge, MA, 1970)

    MATH  Google Scholar 

  92. A. Fogden, S.T. Hyde, Eur. Phys. J. B 7, 91–104 (1999)

    Article  ADS  Google Scholar 

  93. J.M. Seddon, R.H. Templer, Phil. Trans. R. Soc. Lond. A 344(377–401), 1 (1993)

    Google Scholar 

  94. V. Luzzati, Curr. Opin. Struct. Biol. 7, 661–668 (1997)

    Article  Google Scholar 

  95. H. Ishikawa, J. Cell Biol. 38, 51–66 (1968)

    Article  Google Scholar 

  96. S. Schiaffino, A. Margreth, J. Cell Biol. 41, 855–875 (1969)

    Article  Google Scholar 

  97. S. Schiaffino, M.G. Nunzi, P. Burighel, Tiss. Cell 8, 101–110 (1976)

    Article  Google Scholar 

  98. T. Landh, FEBS Lett. 369, 13–17 (1995)

    Article  Google Scholar 

  99. Y. Deng, M. Marko, K.F. Buttle, A. Leith, M. Mieczkowski, C.A. Mannella, J. Struct, Biol. 127, 231–239 (1999)

    Google Scholar 

  100. E.L. Snapp, J. Cell Biol. 163, 257–269 (2003)

    Article  Google Scholar 

  101. N. Borgese, M. Francolini, E. Snapp, Curr. Opin. Cell Boil. 18, 358–364 (2006)

    Article  Google Scholar 

  102. Z.A. Almsherqi, T. Landh, S.D. Kohlwein, Y.R. Deng, Int. Rev. Cel. Mol. Bio. 274, 275–342 (2009)

    Article  Google Scholar 

  103. Z.A. Almsherqi, S.D. Kohlwein, Y. Deng, J. Cell Biol. 173, 839–844 (2006)

    Article  Google Scholar 

  104. J. Zimmerberg, M.M. Kozlov, Nat. Rev. Mol. Cell Biol. 7, 9–19 (2006)

    Article  Google Scholar 

  105. L. Norlen, A. Al-Amoudi, J. Investig. Dermatol. 123, 715–732 (2004)

    Article  Google Scholar 

  106. M. Fuhrmans, S.J. Marrink, J. Am. Chem. Soc. 134, 1543–1552 (2012)

    Article  Google Scholar 

  107. E.Y. Lee, M. Marcucci, L. Daniell, M. Pypaert, O.A. Weisz, G.C. Ochoa, K. Farsad, M.R. Wenk, P. De Camilli, Science 297, 1193–1196 (2002)

    Article  ADS  Google Scholar 

  108. A. Frost, V.M. Unger, P. De Camilli, Cell 137, 191–196 (2009)

    Article  Google Scholar 

  109. V.M. Unger, A. Frost, P. De Camilli, Structure 15, 751–753 (2007)

    Article  Google Scholar 

  110. V.M. Unger, A. Frost, R. Perera, A. Roux, K. Spasov, O. Destaing, E.H. Egelman, P. De Camilli, Cell 132, 807–817 (2008)

    Article  Google Scholar 

  111. A. Dinwiddie, R. Null, M. Pizzano, L. Chuong, A. Leigh, H. Krup, H. Ee Tan, H. Patel, Dev. Biol. 392, 404–418 (2014)

    Article  Google Scholar 

  112. O. Shalem, N.E. Sanjana, E. Hartenian, X. Shi, D.A. Scott, T. Mikkelson, D. Heckl, B.L. Ebert, D.E. Root, J.G. Doench, F. Zhang, Science 343, 84–87 (2014)

    Article  ADS  Google Scholar 

  113. A. Reynolds, D. Leake, Q. Boese, S. Scaringe, W.S. Marshall, A. Khvorova, Nat. Biotech. 22, 326–330 (2004)

    Article  Google Scholar 

  114. P.A. Guerette, S. Hoon, Y. Seow, M. Raida, A. Masic, F.T. Wong, V.H.B. Ho, K.W. Kong, M.C. Demirel, A. Pena-Francesch, S. Amini, G.Z. Tay, D. Ding, A. Miserez. Nat. Biotechnol. 31, 908–915 (2013)

    Article  Google Scholar 

  115. H. Ghiradella, Ann. Entomol. Soc. Am. 78, 252–264 (1985)

    Article  Google Scholar 

  116. H. Ghiradella, M. Butler, J. R. Soc. Interface 6, S243–S251 (2009)

    Article  Google Scholar 

  117. S.B. Carroll, R. Galant, J.B. Skeath, S. Paddock, D.L. Lewis, Curr. Biol. 8, 807–813 (1998)

    Article  Google Scholar 

  118. T.A. Shefelbine, M.E. Vigild, M.W. Matsen, D.A. Hajduk, M.A. Hillmyer, E.L. Cussler, F.S. Bates, J. Am. Chem. Soc. 121, 8457–8465 (1999)

    Article  Google Scholar 

  119. H. Hückstädt, A. Göpfert, V. Abetz, Polymer 41, 9089–9094 (2000)

    Article  Google Scholar 

  120. T. Goldacker, V. Abetz, R. Stadler, I. Erukhimovich, L. Leibler, Nature 398, 137–139 (1999)

    Article  ADS  Google Scholar 

  121. E.A. Lord, A.L. Mackay, Curr. Sci. 85, 346–362 (2003)

    Google Scholar 

  122. L. Martin-Moreno, F.J. Garcia-Vidal, A.M. Somoza, Phys. Rev. Lett. 83, 73–75 (1999)

    Article  ADS  Google Scholar 

  123. S.C. Kapfer, S.T. Hyde, K. Mecke, C.H. Arns, G.E. Schroder-Turk, Biomaterials 32, 6875–6882 (2011)

    Article  Google Scholar 

  124. A.M. Urbas, E.L. Thomas, H. Kriegs, G. Fytas, R.S. Penciu, L.N. Economou, Phys. Rev. Lett. 90, 108302 (2003)

    Article  ADS  Google Scholar 

  125. A.M. Urbas, M. Maldovan, P. DeRege, E.L. Thomas, Adv. Mater. 14, 1850–1853 (2002)

    Article  Google Scholar 

  126. M. Maldovan, C.K. Ullal, W.C. Carter, E.L. Thomas, Nat. Mater. 2, 664–667 (2003)

    Article  ADS  Google Scholar 

  127. M. Maldovan, A.M. Urbas, N. Yufa, W.C. Carter, E.L. Thomas, Phys. Rev. B 65, 165123 (2002)

    Article  ADS  Google Scholar 

  128. M. Saba, M. Thiel, M.D. Turner, S.T. Hyde, M. Gu, K. Grosse-Brauckmann, D.N. Neshev, K. Mecke, G.E. Schroder-Turk, Phys. Rev. Lett. 106, 103902 (2011)

    Article  ADS  Google Scholar 

  129. J.A. Dolan, M. Saba, R. Dehmel, I. Gunkel, Y. Gu, U. Wiesner, O. Hess, T.D. Wilkinson, J.J. Baumberg, U. Steiner, B.D. Wilts, ACS Photon. 3, 1888–1896 (2016)

    Article  Google Scholar 

  130. H.-Y. Hsueh, Y.-C. Ling, H.-F. Wang, L.-Y.C. Chien, Y.-C. Hung, E.L. Thomas, R.-M. Ho, Adv. Mater. 26, 3225–3229 (2014)

    Article  Google Scholar 

  131. X. Cao, D. Xu, Y. Yao, L. Han, O. Terasaki, S. Che, Chem. Mater. 28, 3691–3702 (2016)

    Article  Google Scholar 

  132. T. Sun, P. Tang, F. Qiu, Y. Yang, A.-C. Shi, Macromol. Theor. Simul. (2017)

    Google Scholar 

  133. C. Mille, E.C. Tyrode, R.W. Corkery, RSC Adv. 3, 3109–3117 (2013)

    Article  Google Scholar 

  134. M.R. Weatherspoon, Y. Cai, M. Crne, M. Srinivasarao, K.H. Sandhage, Angew. Chem. 47, 7921–7923 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

The author acknowledges support from Yale-NUS start-up funds, Simon Mochrie, Chinedum Osuji, Eric Dufresne, Rick Prum and Pietro De Camilli for stimulating and helpful discussions on membrane energetics and protein-membrane interactions, Heeso Noh and Hui Cao for help with recording light microscope images of scales, Ainsley Seago, Larry Gall, James Hogan, Ray Gabriel, Darren Mann, and Steve Lingafelter for access to specimens, Michael Rooks for help with EM, Suresh Narayanan and Alec Sandy at beamline 8-ID-I of the Advanced Photon Source (APS) at Argonne National Labs for help with collecting the SAXS data presented here with support by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinodkumar Saranathan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saranathan, V. (2018). Topology of Minimal Surface Biophotonic Nanostructures in Arthropods. In: Gupta, S., Saxena, A. (eds) The Role of Topology in Materials. Springer Series in Solid-State Sciences, vol 189. Springer, Cham. https://doi.org/10.1007/978-3-319-76596-9_11

Download citation

Publish with us

Policies and ethics