Skip to main content

Topologically Complex Morphologies in Block Copolymer Melts

  • Chapter
  • First Online:
The Role of Topology in Materials

Part of the book series: Springer Series in Solid-State Sciences ((SSSOL,volume 189))

  • 2380 Accesses

Abstract

Polymers are macromolecules built from chains of subunits. Most synthetic polymers are built from a single subunit, the monomer, and are termed homopolymers. The connection of two or more homopolymer chains into a larger macromolecule is termed a block copolymer and these can be made with multiple components connected into both linear or branched molecular architectures. Block copolymers remain a subject of significant research interest owing to the control and reproducibility of physical properties and the many fascinating nanoscale structures which can be obtained via self-assembly. The self-assembly behaviour of block copolymers originate from the tendency of the various polymer chains to undergo phase separation which is inherently constrained due to the molecular connectivity. This leads to the formation of ordered mesostructures with characteristic length scales on the order of the chain sizes, typically tens of nanometers. Here the focus is on the molecular architecture as a topological variable and how it influences the morphologies one finds in self-assembled block copolymer systems. We present a range of examples of morphologies with different and sometimes very complex mesoscale topology, i.e. patterns which emerges from the tendency of these molecules to undergo spatial phase separation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    There are a number of practical subtleties associated with this statement. First of all it requires that the molecular weight (or N) is not so large that the temperatures required to reach the transitions disintegrates the molecules, and second, the temperature range has to be above the glass transition temperature \(T_g\) which is a property of the specific chains. We will assume we are in a region of size and temperature where the notion of phase transitions makes sense. Note however that in structural studies of block copolymer morphologies one often utilises the glass transition of one or more of the chains to effectively ‘freeze’ a given structure by a rapid temperature quench.

  2. 2.

    One of the predicted tricontinuous patterns have in fact been identified in both a hard and a soft matter context. In [26] such a pattern was found in a mesoporous silica and the same structure was later identified in a lyotropic liquid crystalline surfactant system [27]. However, in those cases the channels all contain the same material unlike the structures described here which have a different chemical species inside each channel.

References

  1. F. Bates, M. Hillmyer, T. Lodge, C. Bates, K. Delaney, G. Fredrickson, Science 336, 434–440 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  2. N.A. Lynd, A.J. Meuler, M.A. Hillmyer, Prog. Polym. Sci. 33, 875–893 (2008)

    Article  Google Scholar 

  3. M. Matsen, Macromolecules 45, 2161–2165 (2012)

    Article  ADS  Google Scholar 

  4. M. Huggins, J. Chem. Phys. 9(5), 440 (1941)

    Article  ADS  Google Scholar 

  5. P. Flory, J. Chem. Phys. 10, 51 (1942)

    Article  ADS  Google Scholar 

  6. S.T. Hyde, in Handbook of Applied Surface and Colloid Chemistry, ed. by K. Holmberg (Wiley, 2001); chapter 16

    Google Scholar 

  7. C. Huang, H. Yu, Polymer 48, 4537–4546 (2007)

    Article  Google Scholar 

  8. S. Lee, M. Bluemle, F. Bates, Science 330, 349–353 (2010)

    Article  ADS  Google Scholar 

  9. S. Kim, K. Jeong, A. Yethiraj, M. Mahanthappa, Proc. Natl. Acad. Sci. USA 114(16), 4072–4077 (2017). https://doi.org/10.1073/pnas.1701608114

  10. T. Gillard, S. Lee, F. Bates, Proc. Natl. Acad. Sci. USA 113(19), 167–5172 (2016)

    Article  Google Scholar 

  11. N. Hadjichristidis, H. Iatrou, M. Pitsikalis, S. Pispas, A. Avgeropoulos, Prog. Polym. Sci. 30, 725–782 (2005)

    Article  Google Scholar 

  12. F. Bates, MRS Bull. 30, 525–532 (2005)

    Article  Google Scholar 

  13. F. Martinez-Veracoechea, F. Escobedo, Macromolecules 40, 7354–7365 (2007)

    Article  ADS  Google Scholar 

  14. P. Padmanabhan, E. Martinez-Veracoechea, F. Escobedo, Macromolecules 49, 5232–5243 (2016)

    Article  ADS  Google Scholar 

  15. J.J.K. Kirkensgaard, P. Fragouli, N. Hadjichristidis, K. Mortensen, Macromolecules 44(3), 575–582 (2011)

    Article  ADS  Google Scholar 

  16. J.J.K. Kirkensgaard, Soft Matter 6, 6102–6108 (2010)

    Article  ADS  Google Scholar 

  17. Y. Matsushita, K. Hayashida, T. Dotera, A. Takano, J. Phys. Condens. Matter 23, 284111 (2011)

    Article  Google Scholar 

  18. T. Gemma, A. Hatano, T. Dotera, Macromolecules 35, 3225–3227 (2002)

    Article  ADS  Google Scholar 

  19. J.J.K. Kirkensgaard, S. Hyde, Phys. Chem. Chem. Phys. 11, 2016–2022 (2009)

    Article  Google Scholar 

  20. S.T. Hyde, L. de Campo, C. Oguey, Soft Matter 5, 2782–2794 (2009)

    Article  ADS  Google Scholar 

  21. J.J.K. Kirkensgaard, M.C. Pedersen, S.T. Hyde, Soft Matter 10, 7182–7194 (2014)

    Article  ADS  Google Scholar 

  22. C.-I. Huang, H.-K. Fang, C.-H. Lin, Phys. Rev. E 77, 031804 (2008)

    Article  ADS  Google Scholar 

  23. J.J.K. Kirkensgaard, Phys. Rev. E 85, 031802 (2012)

    Article  ADS  Google Scholar 

  24. K. Hayashida, A. Takano, T. Dotera, Y. Matsushita, Macromolecules 41, 6269–6271 (2008)

    Article  ADS  Google Scholar 

  25. S. Hyde, G. Schröder, Curr. Opin. Colloid Interface Sci. 8 (2003),

    Google Scholar 

  26. Y. Han, D. Zhang, L. Chng, J. Sun, L. Zhao, X. Zou, J. Ying, Nat. Chem. 1, 123–127 (2009)

    Article  Google Scholar 

  27. G. Sorenson, A. Schmitt, M. Mahanthappa, Soft Matter 10, 8229–8235 (2014)

    Article  ADS  Google Scholar 

  28. M. Fischer, L. de Campo, J. Kirkensgaard, S. Hyde, G. Schröder-Turk, Macromolecules 47, 7424–7430 (2014)

    Article  ADS  Google Scholar 

  29. V. Abetz, S. Jiang, e-Polymers 054, 1–9 (2004)

    Google Scholar 

  30. J. Kirkensgaard, M. Evans, L. de Campo, S. Hyde, Proc. Natl. Acad. Sci. USA 111(4), 1271–1276 (2014)

    Article  ADS  Google Scholar 

  31. L. Carlucci, G. Ciani, D. Proserpio, Coord. Chem. Rev. 247–289 (2003)

    Google Scholar 

  32. T. Dotera, Phys. Rev. Lett. 82(1), 105 (1999)

    Article  ADS  Google Scholar 

  33. T. Higashihara, T. Sakurai, A. Hirao, Macromolecules 42, 6006–6014 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author wishes to gratefully acknowledge colleagues and mutual co-authors of the authors own research presented in this chapter, in particular Stephen T. Hyde, Liliana de Campo, Myfanwy Evans, Martin C. Pedersen, Gerd E. Schröder-Turk, Michael G. Fischer, Panagiota Fragouli, Nikos Hadjichristidis and Kell Mortensen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. J. K. Kirkensgaard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kirkensgaard, J.J.K. (2018). Topologically Complex Morphologies in Block Copolymer Melts. In: Gupta, S., Saxena, A. (eds) The Role of Topology in Materials. Springer Series in Solid-State Sciences, vol 189. Springer, Cham. https://doi.org/10.1007/978-3-319-76596-9_10

Download citation

Publish with us

Policies and ethics