Skip to main content

Importance of Topology in Materials Science

  • Chapter
  • First Online:
The Role of Topology in Materials

Part of the book series: Springer Series in Solid-State Sciences ((SSSOL,volume 189))

Abstract

We underscore the substantial need for understanding a wide range of multifunctional materials through the notions of topology-geometry interrelationships such as genus, Euler characteristic and network connectivity. After introducing the basic concepts of topology we first illustrate these notions on nanocarbon allotropes as a case study. Next, we consider the growing class of emergent topological materials that encompass both real-space and k-space topological materials including Dirac materials, topological insulators, Weyl semimetals as well as soft and polymeric matter, supramacromolecular assemblies and biophotonic materials. Finally, we emphasize and evaluate metrics to quantify topology in order to study and classify materials properties relevant for wide ranging modern and future technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Gupta, A. Saxena, MRS Bull. News Feature, Oct. 18 (2016); F. Ghahari, D. Walkup, C. Gutiérrez, J.F.R.- Nieva, Y. Zhao, J. Wyrick, F.D. Natterer, W.G. Cullen, K. Watanabe, T. Taniguchi, L.S. Leitov, N.B. Zhitenev, J.A. Stroscio, Science 356, 845 (2017)

    Google Scholar 

  2. S. Gupta, A. Saxena, MRS Bull. 39, 265 (2014)

    Article  Google Scholar 

  3. S. Gupta, A. Saxena, J. Raman Spectrosc. 40, 1127 (2009)

    Article  ADS  Google Scholar 

  4. S. Gupta, A. Saxena, J. Appl. Phys. 109, 074316 (2011)

    Article  ADS  Google Scholar 

  5. S. Gupta, A. Saxena, J. Appl. Phys. 112, 114316 (2012)

    Article  ADS  Google Scholar 

  6. V. Meunier, Ph Lambin, A.A. Lucas, Phys. Rev. B 57, 14886 (1998)

    Article  ADS  Google Scholar 

  7. J.C. Charlier, G.M. Rignanese, Phys. Rev. Lett. 86, 5970 (2001)

    Article  ADS  Google Scholar 

  8. M.W. Iqbal, A.K. Singh, M.Z. Iqbal, J. Eom, J. Phys.: Condens. Matter 24, 335301 (2012)

    Google Scholar 

  9. V. Mennella, G. Monaco, L. Colangeli, E. Bussoletti, Carbon 33, 115 (1995)

    Article  Google Scholar 

  10. G. Toulouse, M. Kléman, J. Phys. Lett. 37, L149 (1976)

    Article  Google Scholar 

  11. G. E. Volovik, V. P. Mineyev, Zh. Eksp. Teor. Fiz. Pis’ma Red. 24, 605 (1976)

    Google Scholar 

  12. J. Wright, N.D. Mermin, Rev. Mod. Phys. 61, 385 (1989)

    Article  ADS  Google Scholar 

  13. X. Xing, J. Stat. Phys. 134, 487 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  14. B. Senyuk, Q. Liu, S. He, R.D. Kamien, R.B. Kusner, T.C. Lubensky, I.I. Smylukhov, Nature 493, 200 (2013)

    Article  ADS  Google Scholar 

  15. B.G. Chen, P.J. Ackerman, G.P. Alexander, R.D. Kamien, I.I. Smylukhov, Phys. Rev. Lett. 110, 237801 (2013)

    Article  ADS  Google Scholar 

  16. G.S. Settles, Schlieren and Shadowgraph Techniques: Visualizing Phenomena in Transparent Media (Springer, Berlin, 2001)

    Book  Google Scholar 

  17. A.T. Skjeltorp, Knots and Applications to Biology, Chemistry and Physics (Springer, NY, 1996)

    Book  Google Scholar 

  18. S.R. Batten, N.R. Champness, X.-M. Chen, J.G.-Martinez, S. Kitagawa, S.L. Öhrström, M. O’Keeffe, M.P. Suh, J. Reedijk, Pure Appl. Chem. 85, 1715 (2013)

    Google Scholar 

  19. A.K. Cheetham, G. Férey, T. Loiseau, Angew. Chem. Inter. Ed. 38, 3268 (1999)

    Article  Google Scholar 

  20. J. Cejka (ed.), Metal-Organic Frameworks Applications from Catalysis to Gas Storage (Wiley-VCH, 2011)

    Google Scholar 

  21. S.T. Hyde, G.E. Schröder-Turk, Interface Focus 2, 529 (2012)

    Article  Google Scholar 

  22. T. Ishøy, K. Mortensen, Langmuir 21, 1766 (2005)

    Article  Google Scholar 

  23. N. Hadjichristidis, S. Pispas, G. Floudas, Block Copolymers: Synthetic Strategies, Physical Properties and Applications (Wiley, NY, 2003)

    Google Scholar 

  24. E. Sezgin, H.-J. Kaiser, T. Baumgart, P. Schwille, K. Simons, I. Levental, Nat. Protoc. 7, 1042 (2012)

    Article  Google Scholar 

  25. D. Zhao, D.J. Timmons, D. Yuan, H.-C. Zhou, Acc. Chem. Res. 44, 123 (2011)

    Article  Google Scholar 

  26. J. Katsaras, T. Gutberlet (eds.), Lipid Bilayers—Structure and Interactions (Springer, Berlin-Heidelberg, 2001)

    Google Scholar 

  27. H.L. Leertouwer, B.D. Wilts, D.G. Stavenga, Opt. Exp. 19, 24061 (2011)

    Article  ADS  Google Scholar 

  28. B.D. Wilts, K. Michielsen, J. Kuipers, H. De Raedt, D.G. Stavenga, Proc. R Soc. B 279, 2524 (2012)

    Article  Google Scholar 

  29. B. Yan, S.-C. Zhang, Rep. Prog. Phys. 75, 096501 (2012)

    Article  ADS  Google Scholar 

  30. X.-L. Qi, T.L. Hughes, S.-C. Zhang, Phys. Rev. B 78, 195424 (2008)

    Article  ADS  Google Scholar 

  31. A. Roy, D.P. DiVincenzo, Topological Quantum Computing, arXiv:1701.05052

  32. S. Tanda, T. Tsuneta, Y. Okajima, K. Inagaki, K. Yamaya, N. Hatakenaka, Nature 417, 397 (2002)

    Article  Google Scholar 

  33. T. Tsuneta, S. Tanda, J. Cryst. Growth 267, 223 (2004)

    Article  ADS  Google Scholar 

  34. T. Matsuura, M. Yamanaka, N. Hatakenaka, T. Matsuyama, S. Tanda, J. Cryst. Growth 297, 157 (2006)

    Article  ADS  Google Scholar 

  35. R.E. Goldstein, H.K. Moffatt, A.I. Pesci, R.L. Ricca, Proc. Natl. Acad. Sci. (USA) 107, 21979 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  36. D.M. Kleiman, D.F. Hinz, Y. Takato, E. Fried, Soft Matter 12, 3750 (2016)

    Article  ADS  Google Scholar 

  37. T.O. Wehling, A.M. Black-Schaffer, A.V. Balatsky, Adv. Phys. 63, 1 (2014)

    Article  ADS  Google Scholar 

  38. J. Cayssol, Comp. Rend. Physique 14, 760 (2013)

    Article  ADS  Google Scholar 

  39. M.Z. Hassan, C.L. Kane, Rev. Mod. Phys. 82, 3045 (2010)

    Article  ADS  Google Scholar 

  40. X.L. Qi, S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011)

    Article  ADS  Google Scholar 

  41. L. Fu, Phys. Rev. Lett. 106, 106802 (2011)

    Article  ADS  Google Scholar 

  42. Y. Ando, L. Fu, Annu. Rev. Condens. Matter Phys. 6, 361 (2015)

    Article  ADS  Google Scholar 

  43. B. Aufray, A. Kara, S.B. Vizzini, H. Oughaddou, C. LeAndri, G. Le Lay, Appl. Phys. Lett. 96, 183102 (2010)

    Article  ADS  Google Scholar 

  44. M.E. Davila, L. Xian, S. Cahangirov, A. Rubio, G. Le Lay, New J. Phys. 16, 095002 (2014)

    Article  ADS  Google Scholar 

  45. B.G. Kim, H.J. Choi, Phys. Rev. B 86, 115435 (2012)

    Article  ADS  Google Scholar 

  46. H. Liu, A.T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tomanek, P.D. Ye, ACS Nano 8, 4033 (2014)

    Article  Google Scholar 

  47. Y. Xu, B. Yan, H.-J Zhang, J. Wang, G. Xu, P. Tang, W. Duan, S.-C. Zhang, Phys. Rev. Lett. 111, 136804 (2013)

    Google Scholar 

  48. G. Bian et al., Nat. Commun. 7, 10556 (2016)

    Article  ADS  Google Scholar 

  49. S.-Y. Xu et al., Science 349, 613 (2015)

    Article  ADS  Google Scholar 

  50. B.Q. Lv et al., Phys. Rev. X 5, 031013 (2015)

    Google Scholar 

  51. V. Mourik, K. Zuo, S.M. Frolov, S.R. Plissard, E.P.A.M. Bakkers, L.P. Kouwenhoven, Science 336, 1003 (2012)

    Article  ADS  Google Scholar 

  52. S. Sasaki, M. Kreiner, K. Segawa, K. Yada, Y. Tanaka, M. Sato, Y. Ando, Phys. Rev. Lett. 107, 217001 (2011); M. Sato, Y. Ando, Rep. Prog. Phys. 80, 076501 (2017)

    Google Scholar 

  53. V.S. Pribiag, A.J.A. Beukman, F. Qu, M.C. Cassidy, C. Charpentier, W. Wegscheider, L.P. Kouwenhoven, Nat. Nanotechnol. 10, 593 (2015)

    Article  ADS  Google Scholar 

  54. D.-T. Tran, A. Dauphin, N. Goldman, P. Gaspard, Phys. Rev. B 91, 085125 (2015)

    Article  ADS  Google Scholar 

  55. M. Levin, A. Stern, Phys. Rev. Lett. 103, 196803 (2009)

    Article  ADS  Google Scholar 

  56. O. Vafek, A. Vishwanath, Ann. Rev. Cond. Mat. Phys. 5, 83 (2014)

    Article  ADS  Google Scholar 

  57. X. Wan, A.M. Turner, A. Vishwanath, S.Y. Savrasov, Phys. Rev. B 83, 205101 (2011)

    Article  ADS  Google Scholar 

  58. A.A. Burkov, L. Balents, Phys. Rev. Lett. 107, 127205 (2011)

    Article  ADS  Google Scholar 

  59. B. Yan, C. Felser, Ann. Rev. Cond. Mat. Phys. 8, 337 (2017)

    Article  ADS  Google Scholar 

  60. S. Jia, S.-Y. Xu, M.Z. Hasan, Nat. Mater. 15, 1140 (2016)

    Article  ADS  Google Scholar 

  61. S. Zhang, I. Gilbert, C. Nisoli, G.-W. Chern, M.J. Erickson, L. O’Brien, C. Leighton, P.E. Lammert, V.H. Crespi, P. Schiffer, Nature 500, 553 (2013)

    Article  ADS  Google Scholar 

  62. P. Milde, D. Kohler, J. Seidel, L.M. Eng, A. Bauer, A. Chacon, J. Kindervater, S. Muhlbauer, C. Pfleiderer, S. Buhrandt, C. Schutte, A. Rosch, Science 340, 1076 (2013)

    Article  ADS  Google Scholar 

  63. S.H. Zhang, J. Zhou, Q. Wang, X.S. Chen, Y. Kawazoe, P. Jena, Proc. Natl. Acad. Sci. (USA) 112, 2372 (2015)

    Article  ADS  Google Scholar 

  64. S. Zhang, Q. Wang, Y. Kawazoe, P. Jena, J. Am. Chem. Soc. 135, 18216 (2013)

    Article  Google Scholar 

  65. A. Lopez-Bezanilla, I. Martin, P.B. Littlewood, Sci. Rep. 6, 33220 (2016)

    Article  ADS  Google Scholar 

  66. A. Lopez-Bezanilla, J. Phys. Chem. C 120, 17101 (2016)

    Article  Google Scholar 

  67. J. Zhang, H.J. Liu, L. Cheng, J. Wei, J.H. Liang, D.D. Fan, J. Shi, X.F. Tang, Q.J. Zhang, Sci. Rep. 4, 6542 (2014)

    Google Scholar 

  68. Z. Wang, X.-F. Zhou, X. Zhang, Q. Zhu, H. Dong, M. Zhao, A.R. Oganov, Nano Lett. 15, 6182 (2015)

    Article  ADS  Google Scholar 

  69. C.-C. Liu, H. Jiang, Y. Yao, Phys. Rev. B 84, 195430 (2011)

    Article  ADS  Google Scholar 

  70. D.V. Else, B. Bauer, C. Nayak, Phys. Rev. Lett. 117, 090402 (2016)

    Article  ADS  Google Scholar 

  71. B.G. Chen, P.J. Ackerman, G.P. Alexander, R.D. Kamien, I.I. Smalyukh, Phys. Rev. Lett. 110, 237801 (2013)

    Article  ADS  Google Scholar 

  72. L. Salvo, M. Suery, A. Marmottant, N. Limodin, D. Bernard, Comput. Rend. Phys. 11, 641 (2010)

    Article  ADS  Google Scholar 

  73. P.A. Midgley, R.E. Dunin-Borkowski, Nat. Mater. 8, 271 (2009)

    Article  ADS  Google Scholar 

  74. A.K. Petford-Long, M. De Graef, Lorentz Microscopy, Characterization of Materials, 1–15 (Wiley Online Library, 2012)

    Google Scholar 

  75. L. Wu, S. Patankar, T. Morimoto, N.L. Nair, E. Thewalt, A. Little, J.G. Analytis, J.E. Moore, J. Orenstein, Nat. Phys. 13, 350 (2017)

    Article  Google Scholar 

  76. H.K. Chae, D.Y. Siberio-Perez, J. Kim, Y.-B. Go, M. Eddaoudi, A.J. Matzger, M. O’Keefe, O.M. Yaghi, Nature 427, 523 (2004)

    Article  ADS  Google Scholar 

  77. R.F.W. Bader, C. Matta, J. Phys. Chem. A 108, 8385 (2004)

    Article  Google Scholar 

  78. R.F.W. Bader, D.E. Fang, J. Chem. Theory Comput. 1, 403 (2005)

    Article  Google Scholar 

  79. V. Saranathan, C.O. Osujib, S.G.J. Mochrieb, H. Nohb, S. Narayanan, A. Sandy, E.R. Dufresneb, R.O. Pruma, Proc. Natl. Acad. Sci. (USA) 107, 11676 (2010)

    Article  ADS  Google Scholar 

  80. V. Saranathan, A.E. Seago, A. Sandy, S. Narayanan, S.G.J. Mochrie, E.R. Dufresne, H. Cao, C.O. Osuji, R.O. Prumand, Nano Lett. 15, 3735 (2015)

    Article  ADS  Google Scholar 

  81. A. Tonomura, H. Umezaki, T. Matsuda, N. Osakabe, J. Endo, Y. Sugita, Phys. Rev. Lett. 51, 331 (1983)

    Article  ADS  Google Scholar 

  82. B. Senyuk et al., Nature 493, 200 (2013)

    Article  ADS  Google Scholar 

  83. X. Michalet, D. Bensimon, Science 269, 666 (1995)

    Article  ADS  Google Scholar 

  84. R. Lipowsky, Encyclopedia of Applied Physics 23, 199 (1998)

    Google Scholar 

  85. B.J. Dair, A. Avgeropoulos, N. Hadjichristidis, E.L. Thomas, J. Mater. Sci. 35, 5207 (2000)

    Article  ADS  Google Scholar 

  86. J. Benoit, A. Saxena, T. Lookman, J. Phys. A 34, 9417 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  87. http://www.topos.samsu.ru and http://www.epinet.anu.edu.au/reference

  88. L. Liu, J.D. Joannopoulos, M. Soljacic, Nat. Photonics 8, 821 (2014)

    Article  ADS  Google Scholar 

  89. T. Stauber, J. Phys.: Condens. Mater 26, 123201 (2014)

    Google Scholar 

  90. D. Jin et al., Nat. Commun. 7, 13486 (2016)

    Article  ADS  Google Scholar 

  91. E.A. Lazar, J.K. Mason, R.D. MacPherson, D.J. Srolovitz, Phys. Rev. Lett. 109, 095505 (2012)

    Article  ADS  Google Scholar 

  92. E.A. Lazar, J. Han, D.J. Srolovitz, Proc. Natl. Acad. Sci. (USA) 112, E5769 (2015)

    Article  ADS  Google Scholar 

  93. S. Torquato, Phys. Rev. E 94, 022122 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge stimulating and helpful discussions with several colleagues around the world over the past decade. This work was supported in parts by the U.S. Department of Energy and Western Kentucky University Research Foundation Inc.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sanju Gupta or Avadh Saxena .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gupta, S., Saxena, A. (2018). Importance of Topology in Materials Science. In: Gupta, S., Saxena, A. (eds) The Role of Topology in Materials. Springer Series in Solid-State Sciences, vol 189. Springer, Cham. https://doi.org/10.1007/978-3-319-76596-9_1

Download citation

Publish with us

Policies and ethics