Skip to main content

Experimental Technique and Working Modes

  • Chapter
  • First Online:
Kelvin Probe Force Microscopy

Part of the book series: Springer Series in Surface Sciences ((SSSUR,volume 65))

Abstract

Kelvin probe force microscopy (KPFM) is a scanning probe microscopy technique providing the capability to image the surface potential of a sample with high spatial and energy resolution. It is based on non-contact atomic force microscopy (nc-AFM) and continuously minimizes the electrostatic interaction between the scanning tip and the surface. Compared to electrostatic force microscopy (EFM) which also measures the electrostatic properties KPFM compensates these force contributions. The two main working modes are the amplitude modulation and the frequency modulation technique, in which the electrostatic force or the electrostatic force gradient are minimized by the application of an appropriate dc-bias voltage, respectively. For metals and semiconductors, the contact potential difference is determined, which is related to the sample’s work function, while for insulators information about local charges and dipoles is obtained. This chapter provides a brief introduction to nc-AFM, EFM, and various KPFM techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In principle, the definition of the CPD could also be selected as \(V_{CPD} = (\varPhi _{tip} - \varPhi _{sample})/e\), which corresponds to \(-V_{CPD}\) of (1.13). Typically the definition of (1.13) is selected such that the changes in \(V_{CPD}\) directly correspond to changes in the work function. Thus, images of \(V_{CPD}\) represent the same contrast as images of the sample’s work function \(\varPhi _{sample}\), just with a constant absolute offset, which is equal to the work function of the tip. In the experimental realization this would correspond to a situation, where the voltage is applied to the sample and the tip is grounded (see Sect. 1.4.3).

References

  1. G. Binnig, H. Rohrer, C. Gerber, E. Weibel, Phys. Rev. Lett. 49(1), 57 (1982)

    Article  ADS  Google Scholar 

  2. G. Binnig, C. Quate, C. Gerber, Phys. Rev. Lett. 56(9), 930 (1986)

    Article  ADS  Google Scholar 

  3. Y. Martin, C. Williams, H. Wickramasinghe, J. Appl. Phys. 61(10), 4723 (1987)

    Article  ADS  Google Scholar 

  4. M. Nonnenmacher, M.P. O’Boyle, H.K. Wickramasinghe, Appl. Phys. Lett. 58(25), 2921 (1991)

    Article  ADS  Google Scholar 

  5. L. Kelvin, Phil. Mag. 46, 82 (1898)

    Article  Google Scholar 

  6. S. Morita, F.J. Giessibl, E. Meyer, R. Wiesendanger (eds.), Noncontact Atomic Force Microscopy (Springer International Publishing, 2015). https://doi.org/10.1007/978-3-319-15588-3

  7. R. García, R. Pérez, Surf. Sci. Rep. 47, 197 (2002)

    Article  ADS  Google Scholar 

  8. J.N. Israelachvili, Intermolecular and Surface Forces (Elsevier LTD, Oxford, 2011)

    Google Scholar 

  9. R. Pérez, M. Payne, I. Stich, K. Terukura, Phys. Rev. Lett. 78, 678 (1997)

    Article  ADS  Google Scholar 

  10. L. Zitzler, S. Herminghaus, F. Mugele, Phys. Rev. B 66, 155436 (2002). https://doi.org/10.1103/PhysRevB.66.155436

    Article  ADS  Google Scholar 

  11. B. Derjaguin, V. Muller, Y. Toporov, J. Colloid Interface Sci. 53(2), 314 (1975). https://doi.org/10.1016/0021-9797(75)90018-1

    Article  ADS  Google Scholar 

  12. A. Sadeghi, A. Baratoff, S.A. Ghasemi, S. Goedecker, T. Glatzel, S. Kawai, E. Meyer, Phys. Rev. B 86, 075407 (2012). https://doi.org/10.1103/PhysRevB.86.075407

    Article  ADS  Google Scholar 

  13. T. Albrecht, P. Grütter, D. Horne, D. Rugar, J. Appl. Phys. 69(2), 668 (1991)

    Article  ADS  Google Scholar 

  14. F. Giessibl, Phys. Rev. B 56(24), 16010 (1997)

    Article  ADS  Google Scholar 

  15. T. Hochwitz, A. Henning, C. Levey, C. Daghlian, J. Slinkman, J. Never, P. Kaszuba, R. Gluck, R. Wells, J. Pekarik, R. Finch, J. Vac. Sci. Technol. B 14(1), 440 (1996)

    Article  Google Scholar 

  16. P.A. Rosenthal, E.T. Yu, R.L. Pierson, P.J. Zampardi, J. Appl. Phys. 87(4), 1937 (1999)

    Article  ADS  Google Scholar 

  17. S. Sadewasser, M. Lux-Steiner, Phys. Rev. Lett. 91, 266101 (2003)

    Article  ADS  Google Scholar 

  18. M. Yan, G.H. Bernstein, Ultramicroscopy 106(7), 582 (2006). https://doi.org/10.1016/j.ultramic.2006.02.002

    Article  Google Scholar 

  19. J. Weaver, D. Abraham, J. Vac. Sci. Technol. B 9(3), 1559 (1991)

    Article  Google Scholar 

  20. A. Kikukawa, S. Hosaka, R. Imura. Appl. Phys. Lett. 66(25), 3510 (1995)

    Google Scholar 

  21. R. Shikler, T. Meoded, N. Fried, B. Mishori, Y. Rosenwaks, J. Appl. Phys. 86(1), 107 (1999)

    Article  ADS  Google Scholar 

  22. R. Shikler, T. Meoded, N. Fried, Y. Rosenwaks, Appl. Phys. Lett. 74(20), 2972 (1999)

    Article  ADS  Google Scholar 

  23. C. Sommerhalter, Kelvinsondenkraftmikroskopie im Ultrahochvakuum zur Charakterisierung von Halbleiter-Heterodioden auf der Basis von Chalkopyriten (Dissertation, Freie Universitt Berlin, 1999)

    Google Scholar 

  24. A. Kikukawa, S. Hosaka, R. Imura, Rev. Sci. Instrum. 67(4), 1463 (1996)

    Article  ADS  Google Scholar 

  25. S. Kawai, H. Kawakatsu, Appl. Phys. Lett. 89, 013108 (2006). https://doi.org/10.1063/1.2219415

    Article  ADS  Google Scholar 

  26. H.J. Butt, M. Jaschke, Nanotechnology 6, 1 (1995)

    Article  ADS  Google Scholar 

  27. C. Sommerhalter, T. Glatzel, T. Matthes, A. Jäger-Waldau, M. Lux-Steiner, Appl. Surf. Sci. 157, 263 (2000)

    Article  ADS  Google Scholar 

  28. T. Glatzel, S. Sadewasser, M. Lux-Steiner, Appl. Sur. Sci. 210, 84 (2003)

    Article  ADS  Google Scholar 

  29. T. Glatzel, Kelvin probe force microscopy for solar cell applications. Scanning Probe Microscopy for Energy Research, vol. 7 (World Scientific Pub Co, 2013)

    Google Scholar 

  30. H. Diesinger, D. Deresmes, J.P. Nys, T. Melin, Ultramicroscopy 108, 773 (2008). https://doi.org/10.1016/j.ultramic.2008.01.003

    Article  Google Scholar 

  31. C. Sommerhalter, T.W. Matthes, T. Glatzel, A. Jäger-Waldau, M.C. Lux-Steiner, Appl. Phys. Lett. 75(2), 286 (1999)

    Google Scholar 

  32. Y. Martin, D. Abraham, H. Wickramasinghe, Appl. Phys. Lett. 52(13), 1103 (1988)

    Article  ADS  Google Scholar 

  33. D. Abraham, C. Williams, J. Slinkman, H. Wickramasinghe, J. Vac. Sci. Technol. B 9(2), 703 (1991)

    Article  Google Scholar 

  34. F. Müller, A.D. Müller, M. Hietschold, S. Kämmer, Meas. Sci. Technol. 9, 734 (1998)

    Google Scholar 

  35. C. Williams, Annu. Rev. Mater. Sci. 29, 471 (1999). https://doi.org/10.1146/annurev.matsci.29.1.471

    Article  ADS  Google Scholar 

  36. S. Kawai, A. Sadeghi, X. Feng, P. Lifen, R. Pawlak, T. Glatzel, A. Willand, A. Orita, J. Otera, S. Goedecker, E. Meyer, ACS Nano 7(10), 9098 (2013). https://doi.org/10.1021/nn403672m

    Article  Google Scholar 

  37. L. Gross, F. Mohn, P. Liljeroth, J. Repp, F.J. Giessibl, G. Meyer, Science 324(5933), 1428 (2009). https://doi.org/10.1126/science.1172273

    Article  ADS  Google Scholar 

  38. T. Knig, G.H. Simon, H.P. Rust, G. Pacchioni, M. Heyde, H.J. Freund, J. Am. Chem. Soc. 131, 17544 (2009). https://doi.org/10.1021/ja908049n

    Article  Google Scholar 

  39. F. Mohn, L. Gross, N. Moll, G. Meyer, Nat. Nano 7(4), 227 (2012)

    Article  Google Scholar 

  40. L. Gross, B. Schuler, F. Mohn, N. Moll, N. Pavliček, W. Steurer, I. Scivetti, K. Kotsis, M. Persson, G. Meyer, Phys. Rev. B 90, 155455 (2014). https://doi.org/10.1103/PhysRevB.90.155455

  41. B. Schuler, S.X. Liu, Y. Geng, S. Decurtins, G. Meyer, L. Gross, Nano Lett. 14(6), 3342 (2014). https://doi.org/10.1021/nl500805x

    Article  ADS  Google Scholar 

  42. W. Steurer, J. Repp, L. Gross, I. Scivetti, M. Persson, G. Meyer, Phys. Rev. Lett. 114, 036801 (2015). https://doi.org/10.1103/PhysRevLett.114.036801

  43. R. Pawlak, T. Glatzel, V. Pichot, L. Schmidlin, S. Kawai, S. Fremy, D. Spitzer, E. Meyer, Nano Lett. 13(12), 58035807 (2013). https://doi.org/10.1021/nl402243s

  44. R. Pawlak, A. Sadeghi, R. Jöhr, A. Hinaut, T. Meier, S. Kawai, Ł. Zajac, P. Olszowski, S. Godlewski, B. Such, T. Glatzel, S. Goedecker, M. Szymoński, E. Meyer, J. Phys. Chem. C 121(6), 3607 (2017). https://doi.org/10.1021/acs.jpcc.6b11873

  45. P. Hapala, M. Švec, O. Stetsovych, N.J. van der Heijden, M. Ondráček, J. van der Lit, P. Mutombo, I. Swart, P. Jelnek, Nat. Commun. 7, 11560 (2016). https://doi.org/10.1038/ncomms11560

  46. F. Albrecht, J. Repp, M. Fleischmann, M. Scheer, M. Ondráĉek, P. Jelínek, Phys. Rev. Lett. 115(7) (2015). https://doi.org/10.1103/physrevlett.115.076101

  47. F. Albrecht, M. Fleischmann, M. Scheer, L. Gross, J. Repp, Phys. Rev. B 92, 235443 (2015). https://doi.org/10.1103/PhysRevB.92.235443

    Article  ADS  Google Scholar 

  48. S. Sadewasser, C. Leendertz, F. Streicher, M.C. Lux-Steiner, Nanotechnology 20, 505503, (2009). https://doi.org/10.1088/0957-4484/20/50/505503

  49. D.W. Pohl, R. Möller, Rev. Sci. Instrum. 59(6), 840 (1988). https://doi.org/10.1063/1.1139790

  50. Y. Miyahara, J. Topple, Z. Schumacher, P. Grutter, Phys. Rev. Appl. 4(5) (2015). https://doi.org/10.1103/physrevapplied.4.054011

  51. Y. Miyahara, P. Grutter, Appl. Phys. Lett. 110(16), 163103 (2017). https://doi.org/10.1063/1.4981937

    Article  ADS  Google Scholar 

  52. N. Kobayashi, H. Asakawa, T. Fukuma, Rev. Sci. Instrum. 81(12), 123705 (2010). https://doi.org/10.1063/1.3514148

    Article  ADS  Google Scholar 

  53. N. Kobayashi, H. Asakawa, T. Fukuma, J. Appl. Phys. 110(4), 044315 (2011). https://doi.org/10.1063/1.3625230

    Article  ADS  Google Scholar 

  54. J. Colchero, A. Gil, A. Baró, Phys. Rev. B 64, 245403 (2001)

    Article  ADS  Google Scholar 

  55. U. Zerweck, C. Loppacher, T. Otto, S. Grafström, L. Eng, Phys. Rev. B 71, 125424 (2005). https://doi.org/10.1103/PhysRevB.71.125424

  56. F. Krok, K. Sajewicz, J. Konior, M. Goryl, P. Piatkowski, M. Szymonski, Phys. Rev. B 77, 235427 (2008). https://doi.org/10.1103/PhysRevB.77.235427

    Article  ADS  Google Scholar 

  57. K. Sajewicz, F. Krok, J. Konior, Jpn. J. Appl. Phys. 49(2), 025201 (2010). https://doi.org/10.1143/JJAP.49.025201

    Article  ADS  Google Scholar 

  58. Y. Rosenwaks, R. Shikler, T. Glatzel, S. Sadewasser, Phys. Rev. B 70, 085320 (2004)

    Article  ADS  Google Scholar 

  59. G. Enevoldsen, T. Glatzel, M. Christensen, J. Lauritsen, F. Besenbacher, Phys. Rev. Lett. 100, 236104 (2008). https://doi.org/10.1103/PhysRevLett.100.236104

  60. R. Jöhr, A. Hinaut, R. Pawlak, A. Sadeghi, S. Saha, S. Goedecker, B. Such, M. Szymoski, E. Meyer, T. Glatzel, J. Chem. Phys. 143(9), 094202 (2015). https://doi.org/10.1063/1.4929608

  61. S. Kawai, T. Glatzel, H.J. Hug, E. Meyer, Nanotechnology 21(24), 245704 (2010)

    Article  ADS  Google Scholar 

  62. F. Bocquet, L. Nony, C. Loppacher, T. Glatzel, Phys. Rev. B 78, 035410 (2008). https://doi.org/10.1103/PhysRevB.78.035410

    Article  ADS  Google Scholar 

  63. T. Hochwitz, A. Henning, C. Levey, C. Daghlian, J. Slinkman, J. Vac. Sci. Technol. B 14(1), 457 (1996)

    Article  Google Scholar 

  64. G. Elias, T. Glatzel, E. Meyer, A. Schwarzman, A. Boag, Y. Rosenwaks, Beilstein J. Nanotechnol. 2, 252 (2011). https://doi.org/10.3762/bjnano.2.29

    Article  Google Scholar 

  65. R. Dianoux, F. Martins, F. Marchi, C. Alandi, F. Comin, J. Chevrier, Phys. Rev. B 68, 045403 (2003). https://doi.org/10.1103/PhysRevB.68.045403

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sascha Sadewasser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sadewasser, S., Glatzel, T. (2018). Experimental Technique and Working Modes. In: Sadewasser, S., Glatzel, T. (eds) Kelvin Probe Force Microscopy. Springer Series in Surface Sciences, vol 65. Springer, Cham. https://doi.org/10.1007/978-3-319-75687-5_1

Download citation

Publish with us

Policies and ethics