Skip to main content

Photocatalytic Degradation of Pharmaceuticals Using Graphene Based Materials

  • Chapter
  • First Online:
A New Generation Material Graphene: Applications in Water Technology

Abstract

Pharmaceutical products are produced purposely for the treatment of diseases with the aim of improving human health. Despite their usefulness to human and animal health, pharmaceuticals are now being regarded as emerging environmental pollutants. This is due to their increased use and the fact that they are indiscriminately discharged into the aquatic environment from hospitals, households, industries, pharmacies, as well as leakages and leachates from municipal wastewater treatment plants and landfill sites. Moreover, the conventional methods of wastewater treatment were not designed with these emerging pollutants in mind resulting in the discharge of untreated or incomplete treated wastewater into water bodies. Pharmaceuticals in water are believed to exert deleterious effects on humans and aquatic organisms. The concern to remove these pharmaceutical wastes and their metabolites from wastewater before their final discharge into water bodies has culminated in the development of a wide variety of other treatment technologies such as adsorption, chemical oxidation, liquid extraction, biodegradation, and so on. However, because these pharmaceuticals are mostly water soluble and non-biodegradable, most of the treatment techniques are inappropriate for their effective removal. The deployment of an appropriate technique for effective degradation of pharmaceutical wastes in water has therefore become a necessary requirement. This chapter therefore provides a detailed discussion on pharmaceuticals in general, their occurrence in water and their health consequences. It also delved into the photocatalytic degradation of these chemicals in water with emphasis on the use of graphene based materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aalicanoglu P, Sponza D (2015) Removal of ciprofloxacin antibiotic with nano graphene oxide magnetite: comparison of adsorption and photooxidation processes. In: Proceedings of the 14th international conference on environmental science and technology

    Google Scholar 

  • Aksu Z (2005) Application of biosorption for the removal of organic pollutants: a review. Process Biochem 40:997–1026

    Article  CAS  Google Scholar 

  • Anirudhan T, Deepa J, Nair AS (2017) Fabrication of chemically modified graphene oxide/nano hydroxyapatite composite for adsorption and subsequent photocatalytic degradation of aureomycine hydrochloride. J Ind Eng Chem 47:415–430

    Article  CAS  Google Scholar 

  • Avetisyan AA, Partoens B, Peeters FM (2009) Electric-field control of the band gap and Fermi energy in graphene multilayers by top and back gates. Phys Rev B 80:1–11

    Article  CAS  Google Scholar 

  • Benotti MJ, Trenholm RA, Vanderford BJ, Holady JC, Stanford BD, Snyder SA (2008) Pharmaceuticals and endocrine disrupting compounds in US drinking water. Environ Sci Technol 43:597–603

    Article  CAS  Google Scholar 

  • Boxall AB, Sinclair CJ, Fenner K, Kolpin D, Maund SJ (2004) When synthetic chemicals degrade in the environment-what are the absolute fate, effects, and potential risks to humans and the ecosystem? Environ Sci Technol 38:368A–375A

    Article  CAS  Google Scholar 

  • Brooks B, Smith W, Blank C, Weston J, Slattery M, Foran C (2003) Pharmaceutical neuromodulation of teleost catecholamines. In: 24th Annual meeting, SETAC North America. Presented on November 12th Austin

    Google Scholar 

  • Burkhardt-Holm P (2011) Linking water quality to human health and environment: the fate of micropollutants. Inst Water Policy Natl Univ Singapore 1–62

    Google Scholar 

  • Castro Neto AH, Guinea F, Peres NMR, Novoselov KS, Geim AK (2009) The electronic properties of graphene. Rev Mod Phys 81:109–162 https://doi.org/10.1103/revmodphys.81.109

    Article  CAS  Google Scholar 

  • Chen D, Ye J (2008) Hierarchical WO3 hollow shells: dendrite, sphere, dumbbell, and their photocatalytic properties. Adv Funct Mater 18:1922–1928

    Article  CAS  Google Scholar 

  • Chen Z, Lin Y-M, Rooks MJ, Avouris P (2007) Graphene nano-ribbon electronics. Phys E: Low Dimens Syst Nanostruct 40:228–232

    Article  CAS  Google Scholar 

  • Cooper DR, D’Anjou B, Ghattamaneni N, Harack B, Hilke M, Horth A, Majlis N, Massicotte M, Vandsburger L, Whiteway E, Yu V (2012) Experimental review of graphene. ISRN Condens Matter Phys 2012:1–56

    Article  CAS  Google Scholar 

  • Daughton CG (2001) Pharmaceuticals and personal care products in the environment: overarching issues and overview. In: ACS symposium series, vol 791. ACS Publications, Washington, DC, pp 2–38

    Google Scholar 

  • Daughton CG (2003) Cradle-to-cradle stewardship of drugs for minimizing their environmental disposition while promoting human health. I. Rationale for and avenues toward a green pharmacy. Environ Health Perspect 111:757

    Article  CAS  Google Scholar 

  • Dhiman L, Ashutosh D (2014) Multifaceted graphene: novelty in electronics. Int J Adv Res Electr Electron Instrum Eng 3:11807–11811

    Google Scholar 

  • Divya K, Umadevi T, Mathew S (2014) Graphene-based semiconductor nanocomposites for photocatalytic applications. J Nanosci Lett 4:21–55

    Google Scholar 

  • Doll TE, Frimmel FH (2005) Removal of selected persistent organic pollutants by heterogeneous photocatalysis in water. Catal Today 101:195–202

    Article  CAS  Google Scholar 

  • Dong H, Gao W, Yan F, Ji H, Ju H (2010) Fluorescence resonance energy transfer between quantum dots and graphene oxide for sensing biomolecules. Anal Chem 82:5511–5517

    Article  CAS  Google Scholar 

  • Dosch H (2009) Gennesys white paper: a new European partnership between nanomaterials science & nanotechnology and synchrotron radiation and neutron facilities. Max-Planck-Institut für Metallforschung, Stuttgart

    Google Scholar 

  • Dragoman D, Dragoman M, Plana R, Dragoman D, Dragoman M, Plana R (2010) Tunable electrical superlattices in periodically gated bilayer graphene. J Appl Phys 107:044312

    Article  CAS  Google Scholar 

  • Dung NT, Van Khoa N, Herrmann J-M (2005) Photocatalytic degradation of reactive dye RED-3BA in aqueous TiO2 suspension under UV-visible light. Int J Photoenergy 7:11–15

    Article  Google Scholar 

  • Elias DC, Nair RR, Mohiuddin TM, Morozov SV, Blake P, Halsall MP, Ferrari AC, Boukhvalov DW, Katsnelson MI, Geim AK, Novoselov KS (2009) Control of graphene’s properties by reversible hydrogenation: evidence for graphane. Science 323:610–613. https://doi.org/10.1126/science.1167130

    Article  CAS  Google Scholar 

  • Ellis JB (2006) Pharmaceutical and personal care products (PPCPs) in urban receiving waters. Environ Pollut 144:184–189

    Article  CAS  Google Scholar 

  • Falkovsky L (2008) Optical properties of graphene. In: Journal of physics: conference series, vol 1. IOP Publishing, p 012004

    Google Scholar 

  • Fick J, Söderström H, Lindberg RH, Phan C, Tysklind M, Larsson D (2009) Contamination of surface, ground, and drinking water from pharmaceutical production. Environ Toxicol Chem 28:2522–2527

    Article  CAS  Google Scholar 

  • Giovannetti G, Khomyakov PA, Brocks G, Kelly PJ, Van Den Brink J (2007) Substrate-induced band gap in graphene on hexagonal boron nitride: ab initio density functional calculations. Phys Rev B Condens Matter Mater Phys 76:2–5. https://doi.org/10.1103/PhysRevB.76.073103

    Article  CAS  Google Scholar 

  • Guardabassi L, Wong DMLF, Dalsgaard A (2002) The effects of tertiary wastewater treatment on the prevalence of antimicrobial resistant bacteria. Water Res 36:1955–1964

    Article  CAS  Google Scholar 

  • Gupta SK, Soni HR, Jha PK (2013) Electronic and phonon bandstructures of pristine few layer and metal doped graphene using first principles calculations. AIP Adv 3:032117

    Article  CAS  Google Scholar 

  • Han MY, Özyilmaz B, Zhang Y, Kim P (2007) Energy band-gap engineering of graphene nanoribbons. Phys Rev Lett 98:206805

    Article  CAS  Google Scholar 

  • He H, Klinowski J, Forster M, Lerf A (1998) A new structural model for graphite oxide. Chem Phys Lett 287:53–56

    Article  CAS  Google Scholar 

  • Jelić A, Gros M, Petrović M, Ginebreda A, Barceló D (2012) Occurrence and elimination of pharmaceuticals during conventional wastewater treatment. In: Emerging and priority pollutants in rivers. Springer, pp 1–23

    Google Scholar 

  • Jones OA, Lester JN, Voulvoulis N (2005) Pharmaceuticals: a threat to drinking water? Trends Biotechnol 23:163–167

    Article  CAS  Google Scholar 

  • Jung I, Dikin DA, Piner RD, Ruoff RS (2008) Tunable electrical conductivity of individual graphene oxide sheets reduced at “Low” temperatures. Nano Lett 8:4283–4287

    Article  CAS  Google Scholar 

  • Karthik R, Vinoth Kumar J, Chen S-M, Karuppiah C, Cheng Y-H, Muthuraj V (2017) A study of electrocatalytic and photocatalytic activity of cerium molybdate nanocubes decorated graphene oxide for the sensing and degradation of antibiotic drug chloramphenicol. ACS Appl Mater Interfaces 9:6547–6559

    Article  CAS  Google Scholar 

  • Khadgi N, Li Y, Upreti AR, Zhang C, Zhang W, Wang Y, Wang D (2016) Enhanced photocatalytic degradation of 17α-ethinylestradiol exhibited by multifunctional ZnFe2O4–Ag/rGO nanocomposite under visible light. Photochem Photobiol 92:238–246

    Article  CAS  Google Scholar 

  • Khan A, Wang J, Li J, Wang X, Chen Z, Alsaedi A, Hayat T, Chen Y, Wang X (2017) The role of graphene oxide and graphene oxide-based nanomaterials in the removal of pharmaceuticals from aqueous media: a review. Environ Sci Pollut Res 24:7938–7958

    Article  CAS  Google Scholar 

  • Kolpin DW, Furlong ET, Meyer MT, Thurman EM, Zaugg SD, Barber LB, Buxton HT (2002) Pharmaceuticals, hormones, and other organic wastewater contaminants in US streams, 1999–2000: a national reconnaissance. Environ Sci Technol 36:1202–1211

    Article  CAS  Google Scholar 

  • Kumar PV, Bardhan NM, Tongay S, Wu J, Belcher AM, Grossman JC (2014) Scalable enhancement of graphene oxide properties by thermally driven phase transformation. Nat Chem 6:151–158

    Article  CAS  Google Scholar 

  • Kümmerer K (2009) Antibiotics in the aquatic environment–a review–part I. Chemosphere 75:417–434

    Article  CAS  Google Scholar 

  • Lacey C, Basha S, Morrissey A, Tobin JM (2012) Occurrence of pharmaceutical compounds in wastewater process streams in Dublin, Ireland. Environ Monit Assess 184:1049

    Article  CAS  Google Scholar 

  • Larsson DJ (2014) Pollution from drug manufacturing: review and perspectives. Phil Trans R Soc B 369:20130571

    Article  CAS  Google Scholar 

  • Larsson DJ, de Pedro C, Paxeus N (2007) Effluent from drug manufactures contains extremely high levels of pharmaceuticals. J Hazard Mater 148:751–755

    Article  CAS  Google Scholar 

  • Li Z, Randak T (2009) Residual pharmaceutically active compounds (PhACs) in aquatic environment–status, toxicity and kinetics: a review. Vet Med (Praha) 52:295–314

    Article  Google Scholar 

  • Lightcap IV, Kosel TH, Kamat PV (2010) Anchoring semiconductor and metal nanoparticles on a two-dimensional catalyst mat. Storing and shuttling electrons with reduced graphene oxide. Nano Lett 10:577–583

    Article  CAS  Google Scholar 

  • Lin-Hui Y, Bang-Gui L, Ding-Sheng W (2001) Ab initio molecular dynamics study on small carbon nanotubes. Chin Phys Lett 18:1496

    Article  Google Scholar 

  • Lin AY-C, Tsai Y-T (2009) Occurrence of pharmaceuticals in Taiwan’s surface waters: impact of waste streams from hospitals and pharmaceutical production facilities. Sci Total Environ 407:3793–3802

    Article  CAS  Google Scholar 

  • Lin L, Wang H, Jiang W, Mkaouar AR, Xu P (2017) Comparison study on photocatalytic oxidation of pharmaceuticals by TiO2-Fe and TiO2-reduced graphene oxide nanocomposites immobilized on optical fibers. J Hazard Mater 333:162–168

    Article  CAS  Google Scholar 

  • Linley S, Liu Y, Ptacek CJ, Blowes DW, Gu FX (2014) Recyclable graphene oxide-supported titanium dioxide photocatalysts with tunable properties. ACS Appl Mater Interfaces 6:4658–4668

    Article  CAS  Google Scholar 

  • Liu Y, Xie B, Zhang Z, Zheng Q, Xu Z (2012) Mechanical properties of graphene papers. J Mech Phys Solids 60:591–605

    Article  CAS  Google Scholar 

  • Liu Y, Jiao Y, Yin B, Zhang S, Qu F, Wu X (2013) Hierarchical semiconductor oxide photocatalyst: a case of the SnO2 microflower. Nano-Micro Lett 5:234–241

    Article  CAS  Google Scholar 

  • Liu Y, Jiao Y, Zhang Z, Qu F, Umar A, Wu X (2014) Hierarchical SnO2 nanostructures made of intermingled ultrathin nanosheets for environmental remediation, smart gas sensor, and supercapacitor applications. ACS Appl Mater Interfaces 6:2174–2184

    Article  CAS  Google Scholar 

  • Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Alemany LB, Lu W, Tour JM (2010) Improved synthesis of graphene oxide. ACS Nano 4:4806–4814

    Article  CAS  Google Scholar 

  • Marques RR, Sampaio MJ, Carrapiço PM, Silva CG, Morales-Torres S, Dražić G, Faria JL, Silva AM (2013) Photocatalytic degradation of caffeine: developing solutions for emerging pollutants. Catal Today 209:108–115

    Article  CAS  Google Scholar 

  • Mermoux M, Chabre Y, Rousseau A (1991) FTIR and 13C NMR study of graphite oxide. Carbon 29:469–474

    Article  CAS  Google Scholar 

  • Model II (2009) Graphene bilayer field-effect phototransistor for terahertz and infrared detection. Phys Rev B 79:245311

    Article  CAS  Google Scholar 

  • Molitor F, Jacobsen A, Stampfer C, Güttinger J, Ihn T, Ensslin K (2008) Transport gap in side-gated graphene constrictions. Phys Rev B 79:1–5

    Google Scholar 

  • Mompelat S, Le Bot B, Thomas O (2009) Occurrence and fate of pharmaceutical products and by-products, from resource to drinking water. Environ Int 35:803–814

    Article  CAS  Google Scholar 

  • Morales-Torres S, Pastrana-Martínez LM, Figueiredo JL, Faria JL, Silva AM (2013) Graphene oxide-P25 photocatalysts for degradation of diphenhydramine pharmaceutical and methyl orange dye. Appl Surf Sci 275:361–368

    Article  CAS  Google Scholar 

  • Nawaz M, Miran W, Jang J, Lee DS (2017) One-step hydrothermal synthesis of porous 3D reduced graphene oxide/TiO2 aerogel for carbamazepine photodegradation in aqueous solution. Appl Catal B 203:85–95

    Article  CAS  Google Scholar 

  • Oppong SO-B, Anku WW, Shukla SK, Agorku ES, Govender PP (2016) Photocatalytic degradation of indigo carmine using Nd-doped TiO2-decorated graphene oxide nanocomposites. J Sol-Gel Sci Technol 80:38–49. https://doi.org/10.1007/s10971-016-4062-8

    Article  CAS  Google Scholar 

  • Passuello A, Mari M, Nadal M, Schuhmacher M, Domingo JL (2010) POP accumulation in the food chain: integrated risk model for sewage sludge application in agricultural soils. Environ Int 36:577–583

    Article  CAS  Google Scholar 

  • Pastrana-Martínez LM, Morales-Torres S, Likodimos V, Figueiredo JL, Faria JL, Falaras P, Silva AM (2012) Advanced nanostructured photocatalysts based on reduced graphene oxide–TiO2 composites for degradation of diphenhydramine pharmaceutical and methyl orange dye. Appl Catal B 123:241–256

    Article  CAS  Google Scholar 

  • Qu X, Brame J, Li Q, Alvarez PJ (2012) Nanotechnology for a safe and sustainable water supply: enabling integrated water treatment and reuse. Acc Chem Res 46:834–843

    Article  CAS  Google Scholar 

  • Raizada P, Kumari J, Shandilya P, Dhiman R, Singh VP, Singh P (2017) Magnetically retrievable Bi2WO6/Fe3O4 immobilized on graphene sand composite for investigation of photocatalytic mineralization of oxytetracycline and ampicillin. Process Saf Environ Prot 106:104–116

    Article  CAS  Google Scholar 

  • Ramirez AJ, Brain RA, Usenko S, Mottaleb MA, O’Donnell JG, Stahl LL, Wathen JB, Snyder BD, Pitt JL, Perez-Hurtado P (2009) Occurrence of pharmaceuticals and personal care products in fish: results of a national pilot study in the United States. Environ Toxicol Chem 28:2587–2597

    Article  CAS  Google Scholar 

  • Rivera-Utrilla J, Sánchez-Polo M, Ferro-García MÁ, Prados-Joya G, Ocampo-Pérez R (2013) Pharmaceuticals as emerging contaminants and their removal from water. A review. Chemosphere 93:1268–1287

    Article  CAS  Google Scholar 

  • Rodriguez-Mozaz S, Weinberg HS (2010) Meeting report: pharmaceuticals in water–an interdisciplinary approach to a public health challenge. Environ Health Perspect 118:1016–1020

    Article  Google Scholar 

  • Saggioro EM, Oliveira AS, Pavesi T, Maia CG, Ferreira LFV, Moreira JC (2011) Use of titanium dioxide photocatalysis on the remediation of model textile wastewaters containing azo dyes. Molecules 16:10370–10386

    Article  CAS  Google Scholar 

  • Schultz IR, Skillman A, Nicolas JM, Cyr DG, Nagler JJ (2003) Short-term exposure to 17α-ethynylestradiol decreases the fertility of sexually maturing male rainbow trout (Oncorhynchus mykiss). Environ Toxicol Chem 22:1272–1280

    Article  CAS  Google Scholar 

  • Schwab BW, Hayes EP, Fiori JM, Mastrocco FJ, Roden NM, Cragin D, Meyerhoff RD, Vincent J, Anderson PD (2005) Human pharmaceuticals in US surface waters: a human health risk assessment. Regul Toxicol Pharm 42:296–312

    Article  CAS  Google Scholar 

  • Segura PA, François M, Gagnon C, Sauvé S (2009) Review of the occurrence of anti-infectives in contaminated wastewaters and natural and drinking waters. Environ Health Perspect 117:675

    Article  CAS  Google Scholar 

  • Seiler RL, Zaugg SD, Thomas JM, Howcroft DL (1999) Caffeine and pharmaceuticals as indicators of waste water contamination in wells. Ground Water 37:405–410

    Article  CAS  Google Scholar 

  • Simpson CD, Brand JD, Berresheim AJ, Przybilla L, Räder HJ, Müllen K (2002) Synthesis of a giant 222 carbon graphite sheet. Chem Eur J 8:1424–1429

    Article  CAS  Google Scholar 

  • Song C, Li X, Wang L, Shi W (2016) Fabrication, characterization and response surface method (RSM) optimization for tetracycline photodegration by Bi3.84W0.16O6.24-graphene oxide (BWO-GO). Sci Rep 6:37466

    Google Scholar 

  • Szabó T, Berkesi O, Forgó P, Josepovits K, Sanakis Y, Petridis D, Dékány I (2006) Evolution of surface functional groups in a series of progressively oxidized graphite oxides. Chem Mater 18:2740–2749. https://doi.org/10.1021/cm060258+

    Article  CAS  Google Scholar 

  • Tambosi JL, Yamanaka LY, José HJ, Moreira RFPM, Schröder HF (2010) Recent research data on the removal of pharmaceuticals from sewage treatment plants (STP). Quim Nova 33:411–420

    Article  CAS  Google Scholar 

  • Tang Y, Liu X, Ma C, Zhou M, Huo P, Yu L, Pan J, Shi W, Yan Y (2015) Enhanced photocatalytic degradation of tetracycline antibiotics by reduced graphene oxide–CdS/ZnS heterostructure photocatalysts. New J Chem 39:5150–5160

    Article  CAS  Google Scholar 

  • Tang L, Wang J-j, Jia C-t, Lv G-x, Xu G, Li W-t, Wang L, Zhang J-y, Wu M-h (2017) Simulated solar driven catalytic degradation of psychiatric drug carbamazepine with binary BiVO4 heterostructures sensitized by graphene quantum dots. Appl Catal B 205:587–596

    Article  CAS  Google Scholar 

  • Ternes TA, Joss A, Siegrist H (2004) Scrutinizing pharmaceutical and personal care products in wastewater treatment. Environ Sci Technol 38:393A–399A

    Article  Google Scholar 

  • Tijani JO, Fatoba OO, Petrik LF (2013) A review of pharmaceuticals and endocrine-disrupting compounds: sources, effects, removal, and detections. Water Air Soil Pollut 224:1770

    Article  CAS  Google Scholar 

  • Trudeau VL, Metcalfe CD, Mimeault C, Moon TW (2005) Pharmaceuticals in the environment: drugged fish? Biochem Mol Biol Fishes 6:475–493

    Article  CAS  Google Scholar 

  • Tryk D, Fujishima A, Honda K (2000) Recent topics in photoelectrochemistry: achievements and future prospects. Electrochim Acta 45:2363–2376

    Article  CAS  Google Scholar 

  • Versteeg DJ, Alder AC, Cunningham VL, Kolpin DW, Murray-Smith R, Ternes T (2005) Environmental exposure modeling and monitoring of human pharmaceutical concentrations in the. In: Human pharmaceuticals: assessing the impacts on aquatic ecosystems. SETAC, Pensacola, Florida, USA, pp 71–110

    Google Scholar 

  • Walker CH, Sibly R, Hopkin S, Peakall DB (2012) Principles of ecotoxicology, 2nd edn. Taylor & Francis, London

    Google Scholar 

  • Wan Z, Wang J (2017) Degradation of sulfamethazine using Fe3O4-Mn3O4/reduced graphene oxide hybrid as Fenton-like catalyst. J Hazard Mater 324:653–664

    Article  CAS  Google Scholar 

  • Wang J, Lin Y, Chen L (1993) Organic-phase biosensors for monitoring phenol and hydrogen peroxide in pharmaceutical antibacterial products. Analyst 118:277–280

    Article  CAS  Google Scholar 

  • Wang S, Sun H, Ang H-M, Tadé M (2013) Adsorptive remediation of environmental pollutants using novel graphene-based nanomaterials. Chem Eng J 226:336–347

    Article  CAS  Google Scholar 

  • White IR, de Groot AC (2006) Cosmetics and skin care products. In: Frosch P, Menné T, Lepoitevin J (eds) Contact dermatitis. Springer, Berlin-Heidelberg, pp 493–506

    Chapter  Google Scholar 

  • Woodling JD, Lopez EM, Maldonado TA, Norris DO, Vajda AM (2006) Intersex and other reproductive disruption of fish in wastewater effluent dominated Colorado streams. Comp Biochem Physiol Part C: Toxicol Pharmacol 144:10–15

    Google Scholar 

  • Wu J, Tomovic Z, Enkelmann V, Müllen K (2004) From branched hydrocarbon propellers to C3-symmetric graphite disks. J Org Chem 69:5179–5186

    Article  CAS  Google Scholar 

  • Wu X, Sprinkle M, Li X, Ming F, Berger C, De Heer WA (2008) Epitaxial-graphene/graphene-oxide junction: an essential step towards epitaxial graphene electronics. Phys Rev Lett 101:26801

    Article  CAS  Google Scholar 

  • Xagoraraki I, Kuo D (2008) Water pollution: emerging contaminants associated with drinking water. In: Heggenhougen K, Quah S (eds) International encyclopedia of public health. Academic Press, San Diego, pp 539–550

    Chapter  Google Scholar 

  • Xiang H, Wei S-H, Gong X (2010) Structural motifs in oxidized graphene: a genetic algorithm study based on density functional theory. Phys Rev B 82:1–5

    Google Scholar 

  • Xu J, Zhu Y, Huang H, Xie Z, Chen D, Shen G (2011) Zinc-oleate complex as efficient precursor for 1-D ZnO nanostructures: synthesis and properties. CrystEngComm 13:2629–2635

    Article  CAS  Google Scholar 

  • Yao Y, Miao S, Liu S, Ma LP, Sun H, Wang S (2012) Synthesis, characterization, and adsorption properties of magnetic Fe3O4@graphene nanocomposite. Chem Eng J 184:326–332

    Article  CAS  Google Scholar 

  • Yao Y, Cai Y, Lu F, Wei F, Wang X, Wang S (2014) Magnetic recoverable MnFe2O4 and MnFe2O4-graphene hybrid as heterogeneous catalysts of peroxymonosulfate activation for efficient degradation of aqueous organic pollutants. J Hazard Mater 270:61–70

    Article  CAS  Google Scholar 

  • Yu J, Ma T, Liu S (2011) Enhanced photocatalytic activity of mesoporous TiO2 aggregates by embedding carbon nanotubes as electron-transfer channel. Phys Chem Chem Phys 13:3491–3501

    Article  CAS  Google Scholar 

  • Zhang Z, Zhang J, Chen N, Qu L (2012) Graphene quantum dots: an emerging material for energy-related applications and beyond. Energy Environ Sci 5:8869–8890

    Article  CAS  Google Scholar 

  • Zhu Y, Xue J, Xu T, He G, Chen H (2017) Enhanced photocatalytic activity of magnetic core–shell Fe3O4@Bi2O3–RGO heterojunctions for quinolone antibiotics degradation under visible light. J Mater Sci Mater Electron 28:8519–8528

    Article  CAS  Google Scholar 

  • Zillioux EJ, Johnson IC, Kiparissis Y, Metcalfe CD, Wheat JV, Ward SG, Liu H (2001) The sheepshead minnow as an in vivo model for endocrine disruption in marine teleosts: a partial life-cycle test with 17α-ethynylestradiol. Environ Toxicol Chem 20:1968–1978

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudheesh K. Shukla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Anku, W.W., Kiarii, E.M., Sharma, R., Joshi, G.M., Shukla, S.K., Govender, P.P. (2019). Photocatalytic Degradation of Pharmaceuticals Using Graphene Based Materials. In: Naushad, M. (eds) A New Generation Material Graphene: Applications in Water Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-75484-0_7

Download citation

Publish with us

Policies and ethics