Skip to main content

Heartbeat Classification of ECG Signals Using Rational Function Systems

  • Conference paper
  • First Online:
Computer Aided Systems Theory – EUROCAST 2017 (EUROCAST 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10672))

Included in the following conference series:

Abstract

The main idea of this paper is to show that rational orthogonal function systems, called Malmquist-Takenaka (MT) systems can effectively be used for ECG heartbeat classification. The idea behind using these systems is the adaptive nature of them. Then the constructed feature vector consists of two main parts, called dynamic and morphological parameters. The latter ones contain the coefficients of the orthogonal projection with respect to the MT systems. Then Support Vector Machine algorithm was used for classifying the heartbeats into the usual 16 arrhythmia classes. The comparison test were performed on the MIT-BIH arrhythmia database. The results show that our algorithm outperforms the previous ones in many respects.

G. Bognár—Supported by the New National Excellence Program of the Ministry of Human Capacities of Hungary.

S. Fridli—This research was supported by the Hungarian Scientific Research Funds (OTKA) No. K115804.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Techol. 2, 27: 1–27: 27 (2011). https://www.csie.ntu.edu.tw/~cjlin/libsvm/

    Google Scholar 

  2. de Chazal, P., O’Dwyer, M., Reilly, R.B.: Automatic classification of heartbeats using ECG morphology and heartbeat interval features. IEEE Trans. Biomed. Eng. 51(7), 1196–1206 (2004). https://doi.org/10.1109/tbme.2004.827359

    Article  Google Scholar 

  3. Cortes, C., Vapnik, V.N.: Support-vector networks. J. Mach. Learn. 20(3), 1–25 (1995). https://doi.org/10.1023/A:1022627411411

    MATH  Google Scholar 

  4. Fridli, S., Lócsi, L., Schipp, F.: Rational function systems in ECG processing. In: Moreno-Díaz, R., Pichler, F., Quesada-Arencibia, A. (eds.) EUROCAST 2011. LNCS, vol. 6927, pp. 88–95. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-27549-4_12

    Chapter  Google Scholar 

  5. Fridli, S., Schipp, F.: Biorthogonal systems to rational functions. Ann. Univ. Sci. Bp. Sect. Comp. 35, 95–105 (2011)

    MathSciNet  MATH  Google Scholar 

  6. Fridli, S., Kovács, P., Lócsi, L., Schipp, F.: Rational modeling of multi-lead QRS complexes in ECG signals. Ann. Univ. Sci. Bp. Sect. Comp. 37, 145–155 (2012)

    MathSciNet  MATH  Google Scholar 

  7. Gilián, Z., Kovács, P., Samiee, K.: Rhythm-based accuracy improvement of heart beat detection algorithms. In: Computing in Cardiology Conference, pp. 269–272 (2014)

    Google Scholar 

  8. Goldberger, A.L., et al.: PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation 101(23), 215–220 (2000). http://circ.ahajournals.org/cgi/content/full/101/23/e215

    Article  Google Scholar 

  9. Heuberger, P.S.C., Van den Hof, P.M.J., Wahlberg, B. (eds.): Modelling and Identification with Rational Orthogonal Basis Functions. Springer-Verlag, London Limited, London (2005)

    Google Scholar 

  10. Jiang, X., Zhang, L.Q., Zhao, Q.B., Albayrak, S.: ECG arrhythmias recognition system based on independent component analysis feature extraction. In: Proceedings IEEE Region 10 Conference, pp. 1–4. (2006). https://doi.org/10.1109/tencon.2006.343781

  11. Kovács, P., Lócsi, L.: RAIT: the rational approximation and interpolation toolbox for Matlab, with experiments on ECG signals. Int. J. Adv. Telecommun. Electech. Sign. Syst. 1(2–3), 67–75 (2012). https://doi.org/10.11601/ijates.v1i2-3.18

    Google Scholar 

  12. Lagerholm, M., Peterson, C., Braccini, G., Edenbrandt, L., Sornmo, L.: Clustering ECG complexes using Hermite functions and self-organizing maps. IEEE Trans. Biomed. Eng. 47(7), 838–848 (2000). https://doi.org/10.1109/10.846677

    Article  Google Scholar 

  13. Lócsi, L.: Approximating poles of complex rational functions. Acta Univ. Sapientiae-Math. 1(2), 169–182 (2009)

    MathSciNet  MATH  Google Scholar 

  14. Luz, E.J.S., Schwartz, W.R., Cámara-Cháveza, G., Menotti, D.: ECG-based heartbeat classification for arrhythmia detection: a survey. Comput. Methods Programs Biomed. 127, 144–164 (2016). https://doi.org/10.1016/j.cmpb.2015.12.008

    Article  Google Scholar 

  15. Moody, G.B., Mark, R.G.: The impact of the MIT-BIH arrhythmia database. IEEE Eng. Med. Biol. Mag. 20(3), 45–50 (2001). https://doi.org/10.1109/51.932724

    Article  Google Scholar 

  16. Nelder, J.A., Mead, R.: A simplex method for function minimization. Comput. J. 7(4), 308–313 (1965). https://doi.org/10.1093/comjnl/7.4.308

    Article  MathSciNet  MATH  Google Scholar 

  17. Osowski, S., Hoa, L.T., Markiewic, T.: Support vector machine-based expert system for reliable heartbeat recognition. IEEE Trans. Biomed. Eng. 51(4), 582–589 (2004). https://doi.org/10.1109/TBME.2004.824138

    Article  Google Scholar 

  18. Prasad, G.K., Sahambi, J.S.: Classification of ECG arrhythmias using multi-resolution analysis and neural networks. In: Proceeding of Conference Convergent Technology Asia-Pacific Region, pp. 227–231 (2003). https://doi.org/10.1109/TENCON.2003.1273320

  19. Robert, K., Colleen, E.C.: Basis and Treatment of Cardiac Arrhythmias, 1st edn. Springer, New York (2006). https://doi.org/10.1007/3-540-29715-4

    Google Scholar 

  20. Rodriguez, J., Goni, A., Illarramendi, A.: Real-time classification of ECGs on a PDA. IEEE Trans. Inf. Techol. Biomed. 9(1), 23–34 (2005). https://doi.org/10.1109/TITB.2004.838369

    Article  Google Scholar 

  21. Sansone, M., Fusco, R., Pepino, A., Sansone, C.: Electrocardiogram pattern recognition and analysis based on artificial neural networks and support vector machines: a review. J. Healthc. Eng. 4(4), 465–504 (2013). https://doi.org/10.1260/2040-2295.4.4.465

    Article  Google Scholar 

  22. Ye, C., Kumar, B.V., Coimbra, M.T.: Heartbeat classification using morphological and dynamic features of ECG signals. IEEE Trans. Biomed. Eng. 59(10), 2930–2941 (2012). https://doi.org/10.1109/TBME.2012.2213253

    Article  Google Scholar 

  23. Zhang, D.: Wavelet approach for ECG baseline wander correction and noise reduction. In: Proceedings IEEE International Conference Engineering Medicine Biology Society, pp. 1212–1215 (2005). https://doi.org/10.1109/IEMBS.2005.1616642

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gergő Bognár .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bognár, G., Fridli, S. (2018). Heartbeat Classification of ECG Signals Using Rational Function Systems. In: Moreno-Díaz, R., Pichler, F., Quesada-Arencibia, A. (eds) Computer Aided Systems Theory – EUROCAST 2017. EUROCAST 2017. Lecture Notes in Computer Science(), vol 10672. Springer, Cham. https://doi.org/10.1007/978-3-319-74727-9_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-74727-9_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-74726-2

  • Online ISBN: 978-3-319-74727-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics