Skip to main content

Discrete Energy Laws for the First-Order System Least-Squares Finite-Element Approach

  • Conference paper
  • First Online:
Large-Scale Scientific Computing (LSSC 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10665))

Included in the following conference series:

  • 1262 Accesses

Abstract

This paper analyzes the discrete energy laws associated with first-order system least-squares (FOSLS) discretizations of time-dependent partial differential equations. Using the heat equation and the time-dependent Stokes’ equation as examples, we discuss how accurately a FOSLS finite-element formulation adheres to the underlying energy law associated with the physical system. Using regularity arguments involving the initial condition of the system, we are able to give bounds on the convergence of the discrete energy law to its expected value (zero in the examples presented here). Numerical experiments are performed, showing that the discrete energy laws hold with order \(\mathcal O\left( h^{2p}\right) \), where h is the mesh spacing and p is the order of the finite-element space. Thus, the energy law conformance is held with a higher order than the expected, \(\mathcal {O}\left( h^p\right) \), convergence of the finite-element approximation. Finally, we introduce an abstract framework for analyzing the energy laws of general FOSLS discretizations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adler, J.H., Manteuffel, T.A., McCormick, S.F., Nolting, J.W., Ruge, J.W., Tang, L.: Efficiency based adaptive local refinement for first-order system least-squares formulations. SIAM J. Sci. Comput. 33(1), 1–24 (2011). http://dx.doi.org/10.1137/100786897

    Article  MathSciNet  MATH  Google Scholar 

  2. Adler, J.H., Manteuffel, T.A., McCormick, S.F., Ruge, J.W.: First-order system least squares for incompressible resistive magnetohydrodynamics. SIAM J. Sci. Comput. 32(1), 229–248 (2010). http://dx.doi.org/10.1137/080727282

    Article  MathSciNet  MATH  Google Scholar 

  3. Adler, J.H., Manteuffel, T.A., McCormick, S.F., Ruge, J.W., Sanders, G.D.: Nested iteration and first-order system least squares for incompressible, resistive magnetohydrodynamics. SIAM J. Sci. Comput. 32(3), 1506–1526 (2010). http://dx.doi.org/10.1137/090766905

    Article  MathSciNet  MATH  Google Scholar 

  4. Bochev, P., Cai, Z., Manteuffel, T.A., McCormick, S.F.: Analysis of velocity-flux first-order system least-squares principles for the Navier-Stokes equations. I. SIAM J. Numer. Anal. 35(3), 990–1009 (1998). http://dx.doi.org/10.1137/S0036142996313592

    Article  MathSciNet  MATH  Google Scholar 

  5. Bochev, P., Gunzburger, M.: Analysis of least-squares finite element mehtods for the Stokes equations. Math. Comput. 63(208), 479–506 (1994)

    Article  MATH  Google Scholar 

  6. Bochev, P., Manteuffel, T.A., McCormick, S.F.: Analysis of velocity-flux least-squares principles for the Navier-Stokes equations. II. SIAM J. Numer. Anal. 36(4), 1125–1144 (1999). (Electronic). http://dx.doi.org/10.1137/S0036142997324976

    Article  MathSciNet  MATH  Google Scholar 

  7. Bramble, J.H., Kolev, T.V., Pasciak, J.: A least-squares approximation method for the time-harmonic Maxwell equations. J. Numer. Math. 13, 237–263 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cai, Z., Lazarov, R., Manteuffel, T.A., McCormick, S.F.: First-order system least squares for second-order partial differential equations. I. SIAM J. Numer. Anal. 31(6), 1785–1799 (1994). http://dx.doi.org/10.1137/0731091

    Article  MathSciNet  MATH  Google Scholar 

  9. Cai, Z., Manteuffel, T.A., McCormick, S.F.: First-order system least squares for second-order partial differential equations. II. SIAM J. Numer. Anal. 34(2), 425–454 (1997). http://dx.doi.org/10.1137/S0036142994266066

    Article  MathSciNet  MATH  Google Scholar 

  10. Davis, T.A.: Algorithm 832: Umfpack v4.3–an unsymmetric-pattern multifrontal method. ACM Trans. Math. Softw. 30(2), 196–199 (2004). http://doi.acm.org/10.1145/992200.992206

    Article  MathSciNet  MATH  Google Scholar 

  11. Feng, J., Liu, C., Shen, J., Yue, P.: A energetic variational formulation with phase field methods for interfacial dynamics of complex fluids: advantages and challenges. In: Calderer, M.C.T., Terentjev, E.M. (eds.) Modeling of Soft Matter. The IMA Volumes in Mathematics and its Applications, vol. 141, pp. 1–26. Springer, New York (2005). https://doi.org/10.1007/0-387-32153-5_1

    Chapter  Google Scholar 

  12. Gelfand, I.M., Fomin, S.V.: Calculus of Variations. Prentice-Hall Inc., Englewood Cliffs (1963). Revised English edition translated and edited by R.A. Silverman

    MATH  Google Scholar 

  13. Girault, V., Raviart, P.A.: Finite Element Approximation of the Navier-Stokes Equations. LNM, vol. 749. Springer, Berlin (1979). https://doi.org/10.1007/BFb0063447

    Book  MATH  Google Scholar 

  14. Heys, J.J., Lee, E., Manteuffel, T.A., McCormick, S.F.: An alternative least-squares formulation of the Navier-Stokes equations with improved mass conservation. J. Comput. Phys. 226(1), 994–1006 (2007). http://dx.doi.org/10.1016/j.jcp.2007.05.005

    Article  MathSciNet  MATH  Google Scholar 

  15. Hyon, Y., Kwak, D.Y., Liu, C.: Energetic variational approach in complex fluids: maximum dissipation principle. Discret. Contin. Dyn. Syst. 26(4), 1291–1304 (2010). http://dx.doi.org/10.3934/dcds.2010.26.1291

    Article  MathSciNet  MATH  Google Scholar 

  16. Johnson, C.: Numerical Solution of Partial Differential Equations by the Finite Element Method. Dover Publications Inc., Mineola (2009). Reprint of the 1987 edition

    MATH  Google Scholar 

  17. Johnson, C., Nävert, U., Pitkäranta, J.: Finite element methods for linear hyperbolic problems. Comput. Methods Appl. Mech. Eng. 45(1–3), 285–312 (1984). http://dx.doi.org/10.1016/0045-7825(84)90158-0

    Article  MathSciNet  MATH  Google Scholar 

  18. Langer, U., Moore, S.E., Neumüller, M.: Space-time isogeometric analysis of parabolic evolution problems. Comput. Methods Appl. Mech. Eng. 306, 342–363 (2016). http://dx.doi.org/10.1016/j.cma.2016.03.042

    Article  MathSciNet  Google Scholar 

  19. Masud, A., Hughes, T.J.R.: A space-time Galerkin/least-squares finite element formulation of the Navier-Stokes equations for moving domain problems. Comput. Methods Appl. Mech. Eng. 146(1–2), 91–126 (1997). http://dx.doi.org/10.1016/S0045-7825(96)01222-4

    Article  MathSciNet  MATH  Google Scholar 

  20. MFEM: Modular finite element methods library (2016). http://mfem.org

  21. Solonnikov, V.A.: Estimates for solutions of a non-stationary linearized system of Navier-Stokes equations. Trudy Mat. Inst. Steklov. 70, 213–317 (1964)

    MathSciNet  Google Scholar 

  22. Solonnikov, V.A.: On boundary value problems for linear parabolic systems of differential equations of general form. Trudy Mat. Inst. Steklov. 83, 3–163 (1965)

    MathSciNet  MATH  Google Scholar 

  23. Xu, J.: Iterative methods by space decomposition and subspace correction. SIAM Rev. 34(4), 581–613 (1992). http://dx.doi.org/10.1137/1034116

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The work of J. H. Adler was supported in part by NSF DMS-1216972. I. V. Lashuk was supported in part by NSF DMS-1216972 (Tufts University) and DMS-1418843 (Penn State). S. P. MacLachlan was partially supported by an NSERC Discovery Grant. The research of L. T. Zikatanov was supported in part by NSF DMS-1720114 and the Department of Mathematics at Tufts University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. H. Adler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Adler, J.H., Lashuk, I., MacLachlan, S.P., Zikatanov, L.T. (2018). Discrete Energy Laws for the First-Order System Least-Squares Finite-Element Approach. In: Lirkov, I., Margenov, S. (eds) Large-Scale Scientific Computing. LSSC 2017. Lecture Notes in Computer Science(), vol 10665. Springer, Cham. https://doi.org/10.1007/978-3-319-73441-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73441-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-73440-8

  • Online ISBN: 978-3-319-73441-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics