Skip to main content

Towards Neural Reusable Neuro-inspired Systems

  • Chapter
  • First Online:
Nonlinear Circuits and Systems for Neuro-inspired Robot Control

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSNONLINCIRC))

  • 594 Accesses

Abstract

This chapter presents an overview of some key aspects of the neuro-inspired modelling previously discussed, under the new perspective of the neural reuse theory. Here it is envisaged that the excellent capabilities shown by insects with their small neuron number and relatively low brain complexity, as compared to vertebrates, could be justified if some key neural structures are re-used for different behavioural needs. The chapter recalls some examples, found in the literature for addressing specific topics and reformulates them in relation to the neural reuse theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anderson, M.: Neural reuse: a fundamental organizational principle of the brain. Behav. Brain Sci. 33, 245–313 (2010)

    Article  Google Scholar 

  2. Arena, P., Patanè, L.: Spatial Temporal Patterns For Action-oriented Perception in Roving Robots II. Springer (2014)

    Google Scholar 

  3. Arena, P., Patanè, L., Termini, P.: Learning expectation in insects: a recurrent spiking neural model for spatio-temporal representation. Neural Netw. 32, 35–45 (2012)

    Google Scholar 

  4. Aso, Y., Hattori, D., Yu, Y., Johnston, R.M., Iyer, N.A., Ngo, T.T., Dionne, H., Abbott, L., Axel, R., Tanimoto, H., Rubin, G.M.: The neuronal architecture of the mushroom body provides a logic for associative learning. ELife 3, e04577 (2014)

    Google Scholar 

  5. Büschges, A., Gruhn, M.: Mechanosensory feedback in walking: from joint control to locomotor patterns. Adv. Insect Physiol. 34, 193–230 (2008)

    Article  Google Scholar 

  6. Dean, J., Kindermann, T., Schmitz, J., Schumm, M., Cruse, H.: Control of walking in stick insect: from behavior and physiology to modeling. Auton. Robot. 7, 271–288 (1999)

    Article  Google Scholar 

  7. Duistermars, B., Frye, M.: Multisensory integration for odor tracking by flying Drosophila. Commun. Integr. Biol. 3(1), 60–63 (2010)

    Google Scholar 

  8. Dürr, V., Schmitz, J., Cruse, H.: Behavior-based modelling of hexapod locomotion: linking biology and technical application. Arthropod Struct. Dev. 33, 237–250 (2004)

    Article  Google Scholar 

  9. Frye, M.: Multisensory systems integration for high-performance motor control in flies. Curr. Opin. Neurobiol. 20(3), 347–352 (2010)

    Google Scholar 

  10. Hanesch, U., Fischbach, K-F., Heisenberg, M.: Neuronal architecture of the central complex in Drosophila melanogaster. Cell Tissue Res. 257, 343–366 (1989)

    Google Scholar 

  11. Ito, K., Suzuki, K., Estes, P., et al.: The organization of extrinsic neurons and their functional roles of the mushroom bodies in Drosophila melanogaster meigen. Learn. Mem. 5, 52–77 (1998)

    Google Scholar 

  12. Liu, G., Seiler, H., Wen, A., Zars, T., Ito, K., Wolf, R., Heisenberg, M., Liu, L.: Distinct memory traces for two visual features in the Drosophila brain. Nature 439, 551–556 (2006)

    Article  Google Scholar 

  13. Nowotny, T., Rabinovich, M., Huerta, R., Abarbanel, H.: Decoding temporal information through slow lateral excitation in the olfactory system of insects. J. Comput. Neurosci. 15, 271–281 (2003)

    Article  Google Scholar 

  14. Ries, A.S., Hermanns, T., Poeck, B., Strauss, R.: Serotonin modulates a depression-like state in Drosophila responsive to lithium treatment. Nat. Commun. 10, 15738 (2017)

    Article  Google Scholar 

  15. Scherer, S., Stocker, R., Gerber, B.: Olfactory learning in individually assayed Drosophila larvae. Learn. Mem. 10, 217–225 (2003)

    Article  Google Scholar 

  16. Solanki, N., Wolf, R., Heisenberg, M.: Central complex and mushroom bodies mediate novelty choice behavior in Drosophila. J. Neurogenet. 29(1), 30–37 (2015)

    Article  Google Scholar 

  17. Strausfeld, NJ, H.F.: Deep homology of arthropod central complex and vertebrate basal ganglia. Science 340, 157–161 (2013)

    Google Scholar 

  18. Strauss, R.: The central complex and the genetic dissection of locomotor behaviour. Curr. Opin. Neurobiol. 12, 633–638 (2002)

    Article  Google Scholar 

  19. Zill, S.N., Moran, D.T.: The exoskeleton and insect proprioception. III. Activity of tibial campaniform sensilla during walking in the American cockroach, Periplaneta Americana. J. Exp. Biol. 94, 57–75 (1981)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Arena .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Patanè, L., Strauss, R., Arena, P. (2018). Towards Neural Reusable Neuro-inspired Systems. In: Nonlinear Circuits and Systems for Neuro-inspired Robot Control. SpringerBriefs in Applied Sciences and Technology(). Springer, Cham. https://doi.org/10.1007/978-3-319-73347-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73347-0_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-73346-3

  • Online ISBN: 978-3-319-73347-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics