Skip to main content

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSNONLINCIRC))

  • 637 Accesses

Abstract

Effective and adaptive motor functions are important for living beings and developing computational and learning mechanisms for roving robots is a crucial aspect in biorobotics. In this chapter we report a new architecture for motor learning to be applied in insect-like walking robots. The proposed model is based on the MB structure previously introduced able to memorize time evolutions of key parameters of the neural motor controller to improve existing motor primitives. The adopted control scheme enables the structure to efficiently cope with goal-oriented behavioural motor tasks. The problem of body-size evaluation is also considered and a model for the parallax-based estimation is provided. Finally, a six-legged structure, showing a steady-state exponentially stable locomotion pattern, was employed to modulate its motor commands implementing an obstacle climbing procedure. Simulation results on a Drosophila-inspired hexapod robot are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alba, L., Morillas, S., Listan, J., Jimenez, A., Arena, P., Patanè, L.: Embedding the anafocus eye-ris vision system in roving robots to enhance the action-oriented perception. In: Proceedings of Microtechnologies for the New Millennium (SPIE 09), pp. 7365–08. Dresden, Germany (2009)

    Google Scholar 

  2. Arena, E., Arena, P., Strauss, R., Patanè, L.: Motor-skill learning in an insect inspired neuro-computational control system. Front. Neurorobot. 11, 12 (2017). https://doi.org/10.3389/fnbot.2017.00012

  3. Arena, P., Caccamo, S., Patanè, L., Strauss, R.: A computational model for motor learning in insects. In: International Joint Conference on Neural Networks (IJCNN), Dallas, TX, pp. 1349–1356, 4–9 August 2013

    Google Scholar 

  4. Arena, P., De Fiore, S., Patanè, L., Pollino, M., Ventura, C.: Insect inspired unsupervised learning for tactic and phobic behavior enhancement in a hybrid robot. In: WCCI 2010 IEEE World Congress on Computational Intelligence, pp. 2417–2424. Barcelona, Spain (2010)

    Google Scholar 

  5. Arena, P., Maceo, S., Patanè, L., Strauss, R.: A spiking network for spatial memory formation: towards a fly-inspired ellipsoid body model. In: IJCNN, Dallas, TX, pp. 1245–1250 (2013)

    Google Scholar 

  6. Arena, P., Mauro, G.D., Krause, T., Patanè, L., Strauss, R.: A spiking network for body size learning inspired by the fruit fly. In: Proceedings of International Joint Conference on Neural Networks, Dallas, TX, pp. 1251–1257 (2013)

    Google Scholar 

  7. Arena, P., Patanè, L., Strauss, R.: The insect mushroom bodies: a paradigm of neural reuse. In: ECAL, pp. 765–772. MIT Press, Taormina, Italy (2013)

    Google Scholar 

  8. Bläsing, B.: Crossing large gaps: a simulation study of stick insect behavior. Adapt. Behav. 14(3), 265–285 (2006)

    Article  Google Scholar 

  9. Bläsing, B., Cruse, H.: Mechanisms of stick insect locomotion in a gap crossing paradigm. J. Comp. Physiol. 190(3), 173–183 (2004)

    Article  Google Scholar 

  10. Brembs, B., Heisenberg, M.: The operant and the classical in conditioned orientation of Drosophila melanogaster at the flight simulator. Learn. Mem. 7(2), 104–115 (2000)

    Article  Google Scholar 

  11. Broussard, D., Karrardjian, C.: Learning in a simple motor system. Learn. Mem. 11, 127–136 (2004)

    Article  Google Scholar 

  12. Cruse, H., Kindermann, T., Schumm, M., Dean, J., Schmitz, J.: Walknet a biologically inspired network to control six-legged walking. Neural Netw. 11, 1435–1447 (1998)

    Article  Google Scholar 

  13. Dasgupta, S., Goldschmidt, D., Wörgötter, F., Manoonpong, P.: Distributed recurrent neural forward models with synaptic adaptation and cpg-based control for complex behaviors of walking robots. Front. Neurorobot. 9, 1–10 (2015). https://doi.org/10.3389/fnbot.2015.00010

  14. Goldschmidt, D., Wörgötter, F., Manoonpong, P.: Biologically-inspired adaptive obstacle negotiation behavior of hexapod robots. Front. Neurorobot. 8, 3 (2014). https://doi.org/10.3389/fnbot.2014.00003

  15. Hoffmann, M., Marques, H., Hernandez, A., Sumioka, H., Lungarella, M., Pfeifer, R.: Body schema in robotics: a review. Auton. Ment. Dev 2(4), 304–324 (2010)

    Article  Google Scholar 

  16. Horridge, G.: Learning of leg position by headless insects. Nature 193, 697–8 (1962)

    Article  Google Scholar 

  17. Kienitz, B.: Motorisches lernen in Drosophila Melanogaster. Ph.D. thesis (2010). Shaker Verlag, Aachen

    Google Scholar 

  18. Krause, A., Bläsing, B., Dürr, V., Schack, T.: Direct control of an active tactile sensor using echo state networks. In: Ritter, H., Sagerer, G., Dillmann, R., Buss, M. (eds.) Human Centered Robot Systems. Springer (2009)

    Google Scholar 

  19. Krause, T., Strauss, R.: Mapping the individual body-size representation underlying climbing control in the brain of Drosophila melanogaster. In: 33rd Gottingen Meeting of the German Neuroscience Society, pp. T25–11B (2011)

    Google Scholar 

  20. Lin, A., Bygrave, A., de Calignon, A., Lee, T., Miesenböck, G.: Sparse, decorrelated odor coding in the mushroom body enhances learned odor discrimination. Nat. Neurosci. 17, 559–568 (2013)

    Article  Google Scholar 

  21. Moore, E., Campbell, D., Grimminger, F., Buehler, M.: Reliable stair climbing in the simple hexapod RHex. In: IEEE International Conference on Robotics and Automation, pp. 2222–2227 (2002)

    Google Scholar 

  22. Nabeshima, C., Lungarella, M., Kuniyoshi, Y.: Timing-based model of body schema adaptation and its role in perception and tool use: A robot case study. In: 4th IEEE International Conference on Development and Learning (ICDL-05), Osaka, Japan, pp. 7–12 (2005)

    Google Scholar 

  23. Pavone, M., Arena, P., Fortuna, L., Frasca, M., Patanè, L.: Climbing obstacle in bio-robots via CNN and adaptive attitude control. Int.J. Circuit Theory Appl. 34, 109–125 (2006)

    Google Scholar 

  24. Pick, S., Strauss, R.: Goal-driven behavioral adaptations in gap-climbing Drosophila. Curr. Biol. 15, 1473–8 (2005)

    Article  Google Scholar 

  25. Pitti, A., Mori, H., Kouzuma, S., Kuniyoshi, Y.: Contingency perception and agency measure in visuo-motor spiking neural networks. IEEE Trans. Auton. Ment. Dev. 1(1) (2009)

    Google Scholar 

  26. Sturm, J., Plagemann, C., Burgard, W.: Adaptive body scheme models for robust robotic manipulation. In: RSS—Robotics Science and Systems IV (2008)

    Google Scholar 

  27. Triphan, T., Poeck, B., Neuser, K., Strauss, R.: Visual targeting of motor actions in climbing Drosophila. Curr. Biol. 20(7), 663–668 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Arena .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Patanè, L., Strauss, R., Arena, P. (2018). Controlling and Learning Motor Functions. In: Nonlinear Circuits and Systems for Neuro-inspired Robot Control. SpringerBriefs in Applied Sciences and Technology(). Springer, Cham. https://doi.org/10.1007/978-3-319-73347-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73347-0_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-73346-3

  • Online ISBN: 978-3-319-73347-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics