Skip to main content

Non-linear Neuro-inspired Circuits and Systems: Processing and Learning Issues

  • Chapter
  • First Online:
Nonlinear Circuits and Systems for Neuro-inspired Robot Control

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSNONLINCIRC))

  • 620 Accesses

Abstract

In this chapter the main elements useful for the design and realization of the neural architectures reported in the following chapters will be presented. Considering spiking and non-spiking neurons, the models used for implementing each of them, the synaptic models, the basic learning and plasticity algorithms and the network architectures will be introduced and analysed. The key elements that led to their selection and application in the developed neuro-inspired systems will be discussed briefly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abbott, L., DePasquale, B., Memmesheimer, R.: Building functional networks of spiking model neurons. Nat. Neurosci. 19(3), 350–355 (2016)

    Article  Google Scholar 

  2. Arena, E., Arena, P., Patanè, L.: CPG-based Locomotion Generation in a Drosophila-inspired Legged Robot. In: Biorob 2012, pp. 1341–1346. Roma, Italy (2012)

    Google Scholar 

  3. Arena, E., Arena, P., Strauss, R., Patanè, L.: Motor-skill learning in an insect inspired neuro-computational control system. Front. Neurorobotics 11, 12 (2017). https://doi.org/10.3389/fnbot.2017.00012

  4. Arena, P.: The central pattern generator: a paradigm for artificial locomotion. Soft Comput. 4(4), 251–265 (2000). www.scopus.com. Cited By :19

  5. Arena, P., Caccamo, S., Patanè, L., Strauss, R.: A computational model for motor learning in insects. In: International Joint Conference on Neural Networks (IJCNN), pp. 1349–1356. Dallas, TX (2013)

    Google Scholar 

  6. Arena, P., De Fiore, S., Patanè, L., Pollino, M., Ventura, C.: Stdp-based behavior learning on tribot robot. Proceedings of SPIE—The International Society for Optical Engineering, vol. 7365, pp. 1–11 (2009). https://doi.org/10.1117/12.821380

  7. Arena, P., Fortuna, L., Frasca, M., Patanè, L.: A CNN-based chip for robot locomotion control. IEEE Trans. Circuits Syst. I 52(9), 1862–1871 (2005)

    Google Scholar 

  8. Arena, P., Fortuna, L., Frasca, M., Patanè, L.: Learning anticipation via spiking networks: application to navigation control. IEEE Trans. Neural Netw. 20(2), 202–216 (2009)

    Google Scholar 

  9. Arena, P., Patanè, L.: Simple sensors provide inputs for cognitive robots. IEEE Instrum. Meas. Mag. 12(3), 13–20 (2009). https://doi.org/10.1109/MIM.2009.5054548

  10. Arshavsky, Y.I., Beloozerova, I.N., Orlovsky, G.N., Panchin, Y.V., Pavlova, G.A.: Control of locomotion in marine mollusc clione limacina iii. on the origin of locomotory rhythm. Exp. Brain Res. 58(2), 273–284 (1985)

    Google Scholar 

  11. Barnstedt, O., David, O., Felsenberg, J., Brain, R., Moszynski, J., Talbot, C., Perrat, P., Waddell, S.: Memory-relevant mushroom body output synapses are cholinergic. Neuron 89(6), 1237–1247 (2017). https://doi.org/10.1016/j.neuron.2016.02.015

  12. Brette, R., Rudolph, M., Carnevale, T., Hines, M., Beeman, D., Bower, J.M., Diesmann, M., Morrison, A., Goodman, P.H., Harris, F.C., Zirpe, M., Natschläger, T., Pecevski, D., Ermentrout, B., Djurfeldt, M., Lansner, A., Rochel, O., Vieville, T., Muller, E., Davison, A.P., El Boustani, S., Destexhe, A.: Simulation of networks of spiking neurons: a review of tools and strategies. J. Comput. Neurosci. 23(3), 349–398 (2007)

    Article  MathSciNet  Google Scholar 

  13. Büschges, A., Wolf, H.: Nonspiking local interneurons in insect leg motor control. i. common layout and species-specific response properties of femur-tibia joint control pathways in stick insect and locust. J. Neurophysiol. 73(5), 1843–1860 (1995). http://jn.physiology.org/content/73/5/1843

  14. Chen, Q., Wang, J., Yang, S., Qin, Y., Deng, B., Wei, X.: A real-time FPGA implementation of a biologically inspired central pattern generator network. Neurocomputing 244, 63–80 (2017). https://doi.org/10.1016/j.neucom.2017.03.028

  15. Compte, A., Brunel, N., Goldman-Rakic, P., Wang, X.: Synaptic mechanisms and network dynamics underlying spatial working memory in a cortical network model. Cereb. Cortex 10, 910–923 (2000)

    Google Scholar 

  16. Cruse, H.: MMC—a new numerical approach to the kinematics of complex manipulators. Mech. Mach. Theory 37, 375–394 (2002)

    Article  MATH  Google Scholar 

  17. Durstewitz, D., Seamans, J., Sejnowski, T.: Neurocomputational models of working memory. Nat. Neurosci. 19(3), 1184–1191 (2000)

    Article  Google Scholar 

  18. Erlhagen, W., Bicho, E.: The dynamic neural field approach to cognitive robotics. J. Neural Eng. 3(3), R36 (2006)

    Article  Google Scholar 

  19. Hoppensteadt, F., Izhikevich, E., Arbib, M.A. (eds.): Brain Theory and Neural Networks, vol. 181–186, 2nd edn. MIT press, Cambridge (2002)

    Google Scholar 

  20. Indiveri, G., Linares-Barranco, B., Hamilton, T., van Schaik, A., Etienne-Cummings, R., Delbruck, T., Liu, S.C., Dudek, P., Hfliger, P., Renaud, S., Schemmel, J., Cauwenberghs, G., Arthur, J., Hynna, K., Folowosele, F., SAGHI, S., Serrano-Gotarredona, T., Wijekoon, J., Wang, Y., Boahen, K.: Neuromorphic silicon neuron circuits. Front. Neurosci. 5(73), 1–23 (2011). https://doi.org/10.3389/fnins.2011.00073

  21. Izhikevich, E., Desai, N., Walcott, E., Hoppensteadt, F.: Bursts as a unit of neural information: selective communication via resonance. TRENDS Neurosci. 26(3), 161–167 (2003)

    Article  Google Scholar 

  22. Izhikevich, E.M.: Which model to use for cortical spiking neurons? IEEE Trans. Neural Netw. 15(5), 1063–1070 (2004)

    Article  Google Scholar 

  23. Jaeger, H.: The “echo state” approach to analysing and training recurrent neural networks. GMD-Report German National Research Institute for Computer Science 148 (2001)

    Google Scholar 

  24. Johnson, J.S., Spencer, J.P., Luck, S.J., Schoner, G.: A dynamic neural field model of visual working memory and change detection. Psychol. Sci. 20(5), 568–577 (2009). https://doi.org/10.1111/j.1467-9280.2009.02329.x

  25. Maass, W., Natschlger, T., Markram, H.: Real-time computing without stable states: a new framework for neural computation based on perturbations. Neural Comput. 14(11), 2531–2560 (2002)

    Google Scholar 

  26. Morris, C., Lecar, H.: Voltage oscillations in the barnacle giant muscle fiber. Biophys. J. 35, 193–213 (1981)

    Google Scholar 

  27. Morrison, A., Diesmann, M., Gerstner, W.: Phenomenological models of synaptic plasticity based on spike timing. Biol. Cybern. 98(6), 459–478 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. Seo, K., Slotine, J.: Models for global synchronization in cpg-based locomotion. In: Proceedings 2007 IEEE International Conference on Robotics and Automation, pp. 281–286 (2007)

    Google Scholar 

  29. Siegler, M.V.: Nonspiking interneurons and motor control in insects. Adv. Insect Physiol. 18, 249–304 (1985). https://doi.org/10.1016/S0065-2806(08)60042-9

  30. Song, S., Miller, K.D., Abbott, L.F.: Competitive Hebbian learning through spike-timing-dependent plasticity. Nat. Neurosci. 3, 919–926 (2000)

    Article  Google Scholar 

  31. Tani, J.: Model-based learning for mobile robot navigation from the dynamical systems perspective. IEEE Trans. Syst. Man Cybern. Part B 26(3), 421–436 (1996)

    Google Scholar 

  32. Thalmeier, D., Uhlmann, M., Kappen, H.J., Memmesheimer, R.M.: Learning universal computations with spikes. PLOS Comput. Biol. 12(6), 1–29 (2016). https://doi.org/10.1371/journal.pcbi.1004895

  33. Tuckwell, H.: Introduction to Theoretical Neurobiology. Cambridge UP (1988)

    Google Scholar 

  34. Wang, R., Cohen, G., Stiefel, K., Hamilton, T., Tapson, J., van Schaik, A.: An fpga implementation of a polychronous spiking neural network with delay adaptation. Front. Neurosci. 7(14), 1–14 (2013). https://doi.org/10.3389/fnins.2013.00014

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Arena .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Patanè, L., Strauss, R., Arena, P. (2018). Non-linear Neuro-inspired Circuits and Systems: Processing and Learning Issues. In: Nonlinear Circuits and Systems for Neuro-inspired Robot Control. SpringerBriefs in Applied Sciences and Technology(). Springer, Cham. https://doi.org/10.1007/978-3-319-73347-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73347-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-73346-3

  • Online ISBN: 978-3-319-73347-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics