Skip to main content

Biological Investigation of Neural Circuits in the Insect Brain

  • Chapter
  • First Online:
Nonlinear Circuits and Systems for Neuro-inspired Robot Control

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSNONLINCIRC))

Abstract

Watching insects thoughtfully one cannot but adore their behavioural capabilities. They have developed amazing reproductive, foraging and orientation strategies and at the same time they followed the evolutionary path of miniaturization and sparseness. Both features together turn them into a role model for autonomous robots. Despite their tiny brains, fruit flies (Drosophila) can orient, walk on uneven terrain, in any orientation to gravity, can fly in adverse winds, find partners, places for egg laying, food and shelter. Drosophila melanogaster is the model animal for geneticists and cutting-edge tools are being continuously developed to study the underpinnings of their behavioural capabilities. This provided novel insight into the wiring and the working of central brain structures like the mushroom bodies and the central complex. Plasticity of the nervous system underlies adaptive behaviour. Drosophila flies show various memories from a 4-s working memory for orientation to a life-long body-size memory. Here we will discuss some of the functions and brain structures underlying fitness and role-model function of insects for autonomously roving robots.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aso, Y., Sitaraman, D., Ichinose, T., Kaun, K.R., Vogt, K., Belliart-Guérin, G., Plaçais, P.Y., Robie, A.A., Yamagata, N., Schnaitmann, C., Rowell, W.J., Johnston, R.M., Ngo, T.T., Chen, N., Korff, W., Nitabach, M.N., Heberlein, U., Preat, T., Branson, K.M., Tanimoto, H., Rubin, G.M.: Mushroom body output neurons encode valence and guide memory-based action selection in Drosophila. eLife 3, e04580 (2014)

    Google Scholar 

  2. Batsching, S., Wolf, R., Heisenberg, M.: Inescapable stress changes walking behavior in flies-learned helplessness revisited. PLoS ONE 11(11), e0167066 (2016)

    Article  Google Scholar 

  3. Boyan, G., Liu, Y., Khalsa, S.K., Hartenstein, V.: A conserved plan for wiring up the fan-shaped body in the grasshopper and Drosophila. Dev. Genes Evolut. 227(4), 253–269 (2017)

    Article  Google Scholar 

  4. Brand, A.H., Perrimon, N.: Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118(2), 401–415 (1993)

    Google Scholar 

  5. Burke, C.J., Huetteroth, W., Owald, D., Perisse, E., Krashes, M.J., Das, G., Gohl, D., Silies, M., Certel, S., Waddell, S.: Layered reward signaling through octopamine and dopamine in Drosophila. Nature 492(7429), 433–437 (2012)

    Article  Google Scholar 

  6. Caron, S.J.C., Ruta, V., Abbott, L.F., Axel, R.: Random convergence of olfactory inputs in the Drosophila mushroom body. Nature 497(7447), 113–117 (2013)

    Article  Google Scholar 

  7. Cervantes-Sandoval, I., Phan, A., Chakraborty, M., Davis, R.L.: Reciprocal synapses between mushroom body and dopamine neurons form a positive feedback loop required for learning. eLife 10, e23789 (2017)

    Google Scholar 

  8. Cervantes-Sandoval, I., Martin-Pena, A., Bery, J., Davis, R.: System-like consolidation of olfactory memories in Drosophila. J. Neurosci. 33(23), 9846–9854 (2013)

    Article  Google Scholar 

  9. Chalfie, M., Tu, Y., Euskirchen, G., Ward, W.W., Prasher, D.C.: Green fluorescent protein as a marker for gene expression. Science 263(5148), 802–805 (1994)

    Article  Google Scholar 

  10. Chouhan, N.S., Wolf, R., Helfrich-Förster, C., Heisenberg, M.: Flies remember the time of day. Curr. Biol. 25(12), 1619–1624 (2015)

    Article  Google Scholar 

  11. Chouhan, N.S., Wolf, R., Heisenberg, M.: Starvation promotes odor/feeding-time associations in flies. Learn. Mem. 24(7), 318–321 (2017)

    Article  Google Scholar 

  12. Crittenden, J., Skoulakis, E., Han, K., Kalderon, D., Davis, R.: Tripartite mushroom body architecture revealed by antigenic markers. Learn. Mem. 5(1–2), 38–51 (1998)

    Google Scholar 

  13. Dill, M., Heisenberg, M.: Visual pattern memory without shape recognition. Philos. Trans. R. Soc. Lond. B 349, 143–152 (1995)

    Article  Google Scholar 

  14. Duffy, J.B.: GAL4 system in Drosophila: a fly geneticist’s Swiss army knife. Genesis 34(1–2), 1–15 (2002)

    Article  Google Scholar 

  15. Farris, S.M., Robinson, G.E., Fahrbach, S.E.: Experience-and age-related outgrowth of intrinsic neurons in the mushroom bodies of the adult worker honeybee. J. Neurosci. 21(16), 6395–6404 (2001)

    Google Scholar 

  16. Felsenberg, J., Barnstedt, O., Cognigni, P., Lin, S., Waddell, S.: Re-evaluation of learned information in Drosophila. Nature 544, 240–244 (2017)

    Article  Google Scholar 

  17. Green, J., Adachi, A., Shah, K.K., Hirokawa, J.D., Magani, P.S., Maimon, G.: A neural circuit architecture for angular integration in Drosophila. Nature 546, 101–106 (2017)

    Article  Google Scholar 

  18. Gronenberg, W., López-Riquelme, G.O.: Multisensory convergence in the mushroom bodies of ants and bees. Acta Biol. Hung. 55(1), 31–37 (2004)

    Article  Google Scholar 

  19. Hamada, F.N., Rosenzweig, M., Kang, K., Pulver, S., Ghezzi, A., Jegla, T.J., Garrity, P.A.: An internal thermal sensor controlling temperature preference in Drosophila. Nature 454, 217–220 (2008)

    Article  Google Scholar 

  20. Hammer, M., Menzel, R.: Multiple sites of associative odour learning as revealed by local brain microinjections of octopamine in honeybees. Learn. Mem. 5, 146–156 (1998)

    Google Scholar 

  21. Hanesch, U., Fischbach, K.-F., Heisenberg, M.: Neuronal architecture of the central complex in Drosophila melanogaster. Cell Tissue Res. 257, 343–366 (1989)

    Article  Google Scholar 

  22. Heimbeck, G., Bugnon, V., Gendre, N., Keller, A., Stocker, R.: A central neural circuit for experience-independent olfactory and courtship behavior in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 98(26), 15336–15341 (2001)

    Article  Google Scholar 

  23. Heinze, S.: Neural coding: bumps on the move. Curr. Biol. 27, R410–R412 (2017)

    Article  Google Scholar 

  24. Heinze, S., Reppert, S.M.: Sun compass integration of skylight cues in migratory monarch butterflies. Neuron 69, 345–358 (2011)

    Article  Google Scholar 

  25. Heinze, S., Gotthardt, S., Homberg, U.: Transformation of polarized light information in the central complex of the locust. J. Neurosci. 29, 11783–11793 (2009)

    Article  Google Scholar 

  26. Homberg, U.: Sky compass orientation in desert locusts-evidence from field and laboratory studies. Front. Behav. Neurosci. 9, 346 (2015)

    Article  Google Scholar 

  27. Huetteroth, W., Perisse, E., Lin, S., Klappenbach, M., Burke, C., Waddell, S.: Sweet taste and nutrient value subdivide rewarding dopaminergic neurons in Drosophila. Curr. Biol. 25(6), 751–758 (2015)

    Article  Google Scholar 

  28. Inagaki, H.K., Jung, Y., Hoopfer, E.D., Wong, A.M., Mishra, N., Lin, J.Y., Tsien, R.Y., Anderson, D.J.: Optogenetic control of freely behaving adult Drosophila using a red-shifted channelrhodopsin. Nat. Methods 11(3), 325–332 (2014)

    Article  Google Scholar 

  29. Isabel, G., Pascual, A., Preat, T.: Exclusive consolidated memory phases in Drosophila. Science 304, 1024–1027 (2004)

    Article  Google Scholar 

  30. Ito, K., Shinomiya, K., Ito, M., Armstrong, D., Boyan, G., Hartenstein, V., Harzsch, S., Heisenberg, M., Homberg, U., Jenett, A., Keshishian, H., Restifo, L.L., Rössler, W., Simpson, J.H., Strausfeld, N.J., Strauss, R., Vosshall, L.B.: A systematic nomenclature of the insect brain. Neuron 81, 755–765 (2014)

    Article  Google Scholar 

  31. Kienitz, B.: Motorisches Lernen in Drosophila Melanogaster. Shaker Verlag, Aachen (2010)

    Google Scholar 

  32. Kim, S.S., Rouault, H., Druckmann, S., Jayaraman, V.: Ring attractor dynamics in the Drosophila central brain. Science 356(6340), 849–853 (2017)

    Article  Google Scholar 

  33. Kitamoto, T.: Conditional modification of behavior in Drosophila by targeted expression of a temperature-sensitive shibire allele in defined neurons. J. Neurobiol. 47, 81–92 (2001)

    Article  Google Scholar 

  34. Krause, T., Strauss, R.: Body reach learning from parallax motion in Drosophila requires PKA/CREB. J. Neurogenet. 26 Suppl. 1, 48 (2012)

    Google Scholar 

  35. Kuntz, S., Poeck, B., Sokolowski, M.B., Strauss, R.: The visual orientation memory of Drosophila requires Foraging (PKG) upstream of Ignorant (RSK2) in ring neurons of the central complex. Learn. Mem. 19, 337–340 (2012)

    Article  Google Scholar 

  36. Kuntz, S., Poeck, B., Strauss, R.: Visual working memory requires permissive and instructive NO/cGMP signaling at presynapses in the Drosophila central brain. Curr. Biol. 27(5), 613–623 (2017)

    Article  Google Scholar 

  37. Lee, T., Lee, A., Lou, L.: Development of the Drosophila mushroom bodies: sequential generation of three distinct types of neurons form a neuroblast. Development 126(18), 4065–4076 (1999)

    Google Scholar 

  38. Lei, Z., Chen, K., Li, H., Liu, H., Guo, A.: The GABA system regulates the sparse coding of odors in the mushroom bodies of Drosophila. Biochem. Biophys. Res. Commun. 436(1), 35–40 (2013)

    Article  Google Scholar 

  39. Lin, C.-Y., Chuang, C.-C., Hua, T.-E., Chen, C.-C., Dickson, B.J., Greenspan, R.J., Chiang, A.-S.: A comprehensive wiring diagram of the protocerebral bridge for visual information processing in the Drosophila brain. Cell Rep. 3, 1739–1753 (2013)

    Article  Google Scholar 

  40. Liu, L., Wolf, R., Ernst, R., Heisenberg, M.: Context generalization in Drosophila visual learning requires the mushroom bodies. Nature 400(6746), 753–756 (1999)

    Article  Google Scholar 

  41. Liu, G., Seiler, H., Wen, A., Zars, T., Ito, K., Wolf, R., Heisenberg, M., Liu, L.: Distinct memory traces for two visual features in the Drosophila brain. Nature 439(7076), 551–556 (2006)

    Article  Google Scholar 

  42. Martin, J., Ernst, R., Heisenberg, M.: Mushroom bodies suppress locomotor activity in Drosophila melanogaster. Learn. Mem. 5(1), 179–191 (1998)

    Google Scholar 

  43. Martin-Pena, A., Acebes, A., Rodriguez, J.-R., Chevalier, V., Triphan, T., Strauss, R., Ferrus, A.: Cell types and coincident synapses in the ellipsoid body of Drosophila. Eur. J. Neurosci. 39(10), 1586–1601 (2014)

    Article  Google Scholar 

  44. Masse, N., Turner, G., Jefferis, G.: Olfactory information processing in Drosophila. Curr. Biol. 19(16), R700–R713 (2009)

    Article  Google Scholar 

  45. McBride, S., Giuliani, G., Choi, C., Krause, P., Correale, D., Watson, K., Baker, G., Siwicki, K.: Mushroom body ablation impairs short-term memory and long-term memory of courtship conditioning in Drosophila melanogaster. Neuron 24(4), 967–977 (1999)

    Article  Google Scholar 

  46. McGuire, S.E., Le, P.T., Osborn, A.J., Matsumoto, K., Davis, R.L.: Spatiotemporal rescue of memory dysfunction in Drosophila. Science 302(5651), 1765–1768 (2003)

    Article  Google Scholar 

  47. Miyamoto, T., Amrein, H.: Suppression of male courtship by a Drosophila pheromone receptor. Nat. Neurosci. 11(8), 874–876 (2008)

    Article  Google Scholar 

  48. Mizunami, M., Weibrecht, J., Strausfeld, N.: A new role for the insect mushroom bodies: place memory and motor control. In: Beer, R. (ed.) Biological Neural Networks in Invertebrate Neuroethology and Robotics, pp. 199–225. Academic Press, Cambridge (1993)

    Google Scholar 

  49. Mizunami, M., Weibrecht, J., Strausfeld, N.: Mushroom bodies of the cockroach: their participation in place memory. J. Comp. Neurol. 402, 520–537 (1998)

    Article  Google Scholar 

  50. Morris, R.: Spatial localization does not require the presence of local cues. Learn. Motiv. 12, 239–260 (1981)

    Article  Google Scholar 

  51. Mronz, M., Strauss, R.: Proper retreat from attractive but inaccessible landmarks requires the mushroom bodies. In: 9th European Symposium on Drosophila Neurobiology, Neurofly Dijon (Abstract) (2002)

    Google Scholar 

  52. Neuser, K., Triphan, T., Mronz, M., Poeck, B., Strauss, R.: Analysis of a spatial orientation memory in Drosophila. Nature 453(7199), 1244–1247 (2008)

    Article  Google Scholar 

  53. Ofstad, T.A., Zuker, C.S., Reiser, M.B.: Visual place learning in Drosophila melanogaster. Nature 474(7350), 204–207 (2011)

    Article  Google Scholar 

  54. Omoto, J.J., Keleş, M.F., Nguyen, B.-C.M., Bolanos, C., Lovick, J.K., Frye, M.A., Hartenstein, V.: Visual input to the Drosophila central complex by developmentally and functionally distinct neuronal populations. Curr. Biol. 27(8), 1098–1110 (2017)

    Article  Google Scholar 

  55. Ostrowski, D., Kahsai, L., Kramer, E.F., Knutson, P., Zars, T.: Place memory retention in Drosophila. Neurobiol. Learn. Mem. 123, 217–224 (2015)

    Article  Google Scholar 

  56. Pan, Y., Zhou, Y., Guo, C., Gong, H., Gong, Z., Liu, L.: Differential roles of the fan-shaped body and the ellipsoid body in Drosophila visual pattern memory. Learn. Mem. 16, 289–295 (2009)

    Article  Google Scholar 

  57. Perisse, E., Yin, Y., Lin, A., Lin, S., Hütteroth, W., Waddell, S.: Different Kenyon cell populations drive learned approach and avoidance in Drosophila. Neuron 79(5), 945–956 (2013)

    Article  Google Scholar 

  58. Perisse, E., Burke, C., Huetteroth, W., Waddell, S.: Shocking revelations and saccharin sweetness in the study of Drosophila olfactory memory. Curr. Biol. 23(17), R752–R763 (2013)

    Article  Google Scholar 

  59. Pfeiffer, B.D., Jenett, A., Hammonds, A.S., Ngo, T.-T.B., Misra, S., Murphy, C., Scully, A., Carlson, J.W., Wan, K.H., Laverty, T.R., Mungall, C., Svirskas, R., Kadonaga, J.T., Doe, C.Q., Eisen, M.B., Celniker, S.E., Rubin, G.M.: Tools for neuroanatomy and neurogenetics in Drosophila. Proc. Natl. Acad. Sci. USA 105, 9715–9720 (2008)

    Article  Google Scholar 

  60. Pick, S., Strauss, R.: Goal-driven behavioral adaptations in gap-climbing Drosophila. Curr. Biol. 15, 1473–1478 (2005)

    Article  Google Scholar 

  61. Poeck, B., Triphan, T., Neuser, K., Strauss, R.: Locomotor control by the central complex in Drosophila-an analysis of the tay bridge mutant. Dev. Neurobiol. 68, 1046–1058 (2008)

    Article  Google Scholar 

  62. Putz, G., Heisenberg, M.: Memories in Drosophila heat-box learning. Learn. Mem. 9(5), 349–359 (2002)

    Article  Google Scholar 

  63. Putz, G., Bertolucci, F., Raabe, T., Zars, T., Heisenberg, M.: The S6KII (rsk) gene of Drosophila melanogaster differentially affects an operant and a classical learning task. J. Neurosci. 24(44), 9745–9751 (2004)

    Article  Google Scholar 

  64. Ries, A.-S., Hermanns, T., Poeck, B., Strauss, R.: Serotonin modulates a depression-like state in Drosophila responsive to lithium treatment. Nat. Commun. 8, 15738 (2017)

    Article  Google Scholar 

  65. Sakai, T., Kitamoto, T.: Differential roles of two major brain structures, mushroom bodies and central complex, for Drosophila male courtship behavior. J. Neurobiol. 66(8), 821–834 (2006)

    Article  Google Scholar 

  66. Schröter, U., Menzel, R.: A new ascending sensory tract to the calyces of the honeybee mushroom body, the subesophageal-calycal tract. J. Comp. Neurol. 465(2), 168–178 (2003)

    Article  Google Scholar 

  67. Schwärzel, M., Monastirioti, M., Scholz, H., Friggi-Grelin, F., Birman, S., Heisenberg, M.: Dopamine and octopamine differentiate between aversive and appetitive olfactory memories in Drosophila. J. Neurosci. 23, 10495–10502 (2003)

    Google Scholar 

  68. Seelig, J.D., Jayaraman, V.: Feature detection and orientation tuning in the Drosophila central complex. Nature 503, 262–266 (2013)

    Article  Google Scholar 

  69. Seelig, J.D., Jayaraman, V.: Neural dynamics for landmark orientation and angular path integration. Nature 521, 186–191 (2015)

    Article  Google Scholar 

  70. Serway, C., Kaufman, R., Strauss, R., de Belle, J.: Mushroom bodies enhance initial motor activity in Drosophila. J. Neurogenet. 23(1–2), 173–184 (2009)

    Article  Google Scholar 

  71. Siegel, R.W., Hall, J.C.: Conditioned responses in courtship behavior of normal and mutant Drosophila. Proc. Natl. Acad. Sci. USA 76, 3430–3434 (1979)

    Article  Google Scholar 

  72. Solanki, N., Wolf, R., Heisenberg, M.: Central complex and mushroom bodies mediate novelty choice behavior in Drosophila. J. Neurogen. 29(1), 30–37 (2015)

    Article  Google Scholar 

  73. Strauss, R., Heisenberg, M.: Coordination of legs during straight walking and turning in Drosophila melanogaster. J. Comp. Physiol. A 167, 403–412 (1990)

    Article  Google Scholar 

  74. Strauss, R., Hanesch, U., Kinkelin, M., Wolf, R., Heisenberg, M.: No bridge of Drosophila melanogaster: portrait of a structural mutant of the central complex. J. Neurogen. 8, 125–155 (1992)

    Article  Google Scholar 

  75. Strauss, R., Krause, T., Berg, C., Zäpf, B.: Higher brain centers for intelligent motor control in insects. In: Jeschke, S., Liu, H., Schilberg, D. (eds.) ICIRA 2011, Part II, LNAI 7102, pp. 56–64. Springer, Berlin (2011)

    Google Scholar 

  76. Strutz, A., Soelter, J., Baschwitz, A., Farhan, A., Grabe, V., Rybak, J., Knade, M., Schmucker, M., Hansson, B., Sachse, S.: Decoding odor quality and intensity in the Drosophila brain. eLife 3, e04147 (2014)

    Google Scholar 

  77. Sweeney, S.T., Broadie, K., Keane, J., Niemann, H., O’Kane, C.J.: Targeted expression of tetanus toxin light chain in Drosophila specifically eliminates synaptic transmission and causes behavioral defects. Neuron 14, 341–351 (1995)

    Article  Google Scholar 

  78. Tanaka, N.K., Tanimoto, H., Ito, K.: Neuronal assemblies of the Drosophila mushroom body. J. Comput. Neurosci. 508, 711–755 (2008)

    Article  Google Scholar 

  79. Tang, S., Guo, A.: Choice behavior of Drosophila facing contradictory visual cues. Science 294(5546), 1543–1547 (2001)

    Article  Google Scholar 

  80. Trannoy, S., Redt-Clouet, C., Dura, J., Preat, T.: Parallel processing of appetitive short- and long-term memories in Drosophila. Curr. Biol. 21(19), 1647–1653 (2011)

    Article  Google Scholar 

  81. Triphan, T., Poeck, B., Neuser, K., Strauss, R.: Visual targeting of motor actions in climbing Drosophila. Curr. Biol. 20, 663–668 (2010)

    Article  Google Scholar 

  82. Triphan, T., Nern, A., Roberts, S.F., Korff, W., Naiman, D.Q., Strauss, R.: A screen for constituents of motor control and decision making in Drosophila reveals visual distance-estimation neurons. Sci. Rep. 6, 27000 (2016)

    Article  Google Scholar 

  83. Tully, T., Quinn, W.G.: Classical conditioning and retention in normal and mutant Drosophila melanogaster. J. Comp. Physiol. A 157(2), 263–277 (1985)

    Article  Google Scholar 

  84. Tully, T., Preat, T., Bonyton, S.C., Del Vecchio, M.: Genetic dissection of consolidated memory in Drosophila. Cell 79, 35–47 (1994)

    Article  Google Scholar 

  85. Turner-Evans, D., Wegener, S., Rouault, H., Franconville, R., Wolff, T., Seelig, J.D., Druckmann, S., Jayaraman, V.: Angular velocity integration in a fly heading circuit. eLife 6, e23496 (2017)

    Google Scholar 

  86. van Swinderen, B.: Attention-like processes in Drosophila require short-term memory genes. Science 315, 1590–1593 (2007)

    Article  Google Scholar 

  87. van Swinderen, B., Greenspan, R.J.: Salience modulates 20–30 Hz brain activity in Drosophila. Nat. Neurosci. 6, 579–586 (2003)

    Article  Google Scholar 

  88. van Swinderen, B., McCartney, A., Kauffman, S., Flores, K., Agrawal, K., Wagner, J., Paulk, A.: Shared visual attention and memory systems in the Drosophila brain. PLoS ONE 4, e5989 (2009)

    Article  Google Scholar 

  89. Vogt, K., Schnaitmann, C., Dylla, K.V., Knapek, S., Aso, Y., Rubin, G.M., Tanimoto, H.: Shared mushroom body circuits underlie visual and olfactory memories in Drosophila. eLife 3, e02395 (2014)

    Google Scholar 

  90. Vosshall, L., Stocker, R.: Molecular architecture of smell and taste in Drosophila. Annu. Rev. Neurosci. 30, 505–533 (2007)

    Article  Google Scholar 

  91. Vosshall, L., Wong, A., Axel, R.: An olfactory sensory map in the fly brain. Cell 102(2), 147–159 (2000)

    Article  Google Scholar 

  92. Wolff, T., Iyer, N.A., Rubin, G.M.: Neuroarchitecture and neuroanatomy of the Drosophila central complex: a GAL4-based dissection of protocerebral bridge neurons and circuits. J. Comp. Neurol. 523, 997–1037 (2015)

    Article  Google Scholar 

  93. Wu, J.-K., Tai, C.-Y., Feng, K.-L., Chen, S.-L., Chen, C.-C., Chiang, A.-S.: Long-term memory requires sequential protein synthesis in three subsets of mushroom body output neurons in Drosophila. Sci. Rep. 7, 7112 (2017)

    Article  Google Scholar 

  94. Wustmann, G., Rein, K., Wolf, R., Heisenberg, M.: A new paradigm for operant conditioning of Drosophila melanogaster. J. Comp. Physiol. A 179(3), 429–436 (1996)

    Article  Google Scholar 

  95. Yang, Z., Bertolucci, F., Wolf, R., Heisenberg, M.: Flies cope with uncontrollable stress by learned helplessness. Curr. Biol. 23(9), 799–803 (2013)

    Article  Google Scholar 

  96. Yi, W., Zhang, Y., Tian, Y., Guo, J., Li, Y., Guo, A.: A subset of cholinergic mushroom body neurons requires go signaling to regulate sleep in Drosophila. Sleep 36(12), 1809–1821 (2013)

    Article  Google Scholar 

  97. Young, J.M., Armstrong, J.D.: Structure of the adult central complex in Drosophila: Organization of distinct neuronal subsets. J. Compar. Neurol. 518, 1500–1524 (2010)

    Article  Google Scholar 

  98. Zhang, Z., Li, X., Guo, J., Li, Y., Guo, A.: Two clusters of GABAergic ellipsoid body neurons modulate olfactory labile memory in Drosophila. J. Neurosci. 33(12), 5175–5181 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Arena .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Patanè, L., Strauss, R., Arena, P. (2018). Biological Investigation of Neural Circuits in the Insect Brain. In: Nonlinear Circuits and Systems for Neuro-inspired Robot Control. SpringerBriefs in Applied Sciences and Technology(). Springer, Cham. https://doi.org/10.1007/978-3-319-73347-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73347-0_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-73346-3

  • Online ISBN: 978-3-319-73347-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics