Skip to main content

Resilient N-Body Tree Computations with Algorithm-Based Focused Recovery: Model and Performance Analysis

  • Conference paper
  • First Online:
High Performance Computing Systems. Performance Modeling, Benchmarking, and Simulation (PMBS 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10724))

  • 1484 Accesses

Abstract

This paper presents a model and performance study for Algorithm-Based Focused Recovery (ABFR) applied to N-body computations, subject to latent errors. We make a detailed comparison with the classical Checkpoint/Restart (CR) approach. While the model applies to general frameworks, the performance study is limited to perfect binary trees, due to the inherent difficulty of the analysis. With ABFR, the crucial parameter is the detection interval, which bounds the error latency. We show that the detection interval has a dramatic impact on the overhead, and that optimally choosing its value leads to significant gains over the CR approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Errors that cannot be detected are beyond the ability of any error recovery system to consider.

  2. 2.

    Assuming expensive checks means that any improvements in checking can be incorporated – cost is not a disqualifier.

References

  1. Snir, M., Wisniewski, R.W., Abraham, J.A., Adve, S.V., Bagchi, S., Balaji, P., Belak, J., Bose, P., Cappello, F., Carlson, B., et al.: Addressing failures in exascale computing. Int. J. High Perform. Comput. Appl. 28(2), 129–173 (2014)

    Article  Google Scholar 

  2. Huang, K.H., Abraham, J.: Algorithm-based fault tolerance for matrix operations. IEEE Trans. Comput. 100(6), 518–528 (1984)

    Article  MATH  Google Scholar 

  3. Chen, Z.: Online-ABFT: an online algorithm based fault tolerance scheme for soft error detection in iterative methods. In: PPoPP, pp. 167–176 (2013)

    Google Scholar 

  4. Fang, A., Cavelan, A., Robert, Y., Chien, A.A.: Resilience for stencil computations with latent errors. In: The 46th International Conference on Parallel Processing (ICPP 2017). IEEE Computer Society Press (2017)

    Google Scholar 

  5. Dun, N., et al.: Data decomposition in monte carlo neutron transport simulations using global view arrays. Int. J. High Perform. Comput. Appl. 29, 348–365 (2015)

    Article  Google Scholar 

  6. Fang, A., Chien, A.A.: Applying GVR to molecular dynamics: enabling resilience for scientific computations. Technical report TR-2014-04, University of Chicago (2014)

    Google Scholar 

  7. Chien, A., et al.: Versioned distributed arrays for resilience in scientific applications: global view resilience. Procedia Comput. Sci. 51, 29–38 (2015)

    Article  Google Scholar 

  8. Chien, A., et al.: Exploring versioned distributed arrays for resilience in scientific applications: global view resilience. Int. J. High Perform. Comput. Appl. (2016)

    Google Scholar 

  9. Platform: NERSC CORI. https://www.nersc.gov/users/computational-systems/cori/

  10. Platform: JUQUEEN. http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JUQUEEN/JUQUEEN_node.html

  11. Dun, N., Pleiter, D., Fang, A., Vandenbergen, N., Chien, A.A.: Multi-versioning performance opportunities in BGAS system for resilience. In: Kunkel, J.M., Balaji, P., Dongarra, J. (eds.) ISC High Performance 2016. LNCS, vol. 9697, pp. 486–504. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41321-1_25

    Google Scholar 

  12. Blelloch, G., Narlikar, G.: A practical comparison of \(n\)-body algorithms. In: Parallel Algorithms. Series in Discrete Mathematics and Theoretical Computer Science. American Mathematical Society (1997)

    Google Scholar 

  13. Eastwood, J., Hockney, R.: Computer Simulation Using Particles. McGrawHill, New York (1981)

    MATH  Google Scholar 

  14. Van Albada, G., Van Leer, B., Roberts Jr., W.: A comparative study of computational methods in cosmic gas dynamics. Astron. Astrophys. 108, 76–84 (1982)

    MATH  Google Scholar 

  15. Appel, A.W.: An efficient program for many-body simulation. SIAM J. Sci. Statist. Comput. 6(1), 85–103 (1985)

    Article  MathSciNet  Google Scholar 

  16. Greengard, L., Rokhlin, V.: A fast algorithm for particle simulations. J. Comput. Phys. 73(2), 325–348 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  17. Barnes, J., Hut, P.: A hierarchical o (n log n) force-calculation algorithm. Nature 324(6096), 446–449 (1986)

    Article  Google Scholar 

  18. Hernquist, L.: Performance characteristics of tree codes. Astrophys. J. Suppl. Ser. 64, 715–734 (1987)

    Article  Google Scholar 

  19. McMillan, S.L., Aarseth, S.J.: An o (n log n) integration scheme for collisional stellar systems. Astrophys. J. 414, 200–212 (1993)

    Article  Google Scholar 

  20. Springel, V., Yoshida, N., White, S.D.: Gadget: a code for collisionless and gasdynamical cosmological simulations. New Astronomy 6(2), 79–117 (2001)

    Article  Google Scholar 

  21. O’Gorman, T.: The effect of cosmic rays on the soft error rate of a DRAM at ground level. IEEE Trans. Electron. Devices 41(4), 553–557 (1994)

    Article  Google Scholar 

  22. Ziegler, J.F., Curtis, H.W., Muhlfeld, H.P., Montrose, C.J., Chin, B.: IBM experiments in soft fails in computer electronics. IBM J. Res. Dev. 40(1), 3–18 (1996)

    Article  Google Scholar 

  23. Moody, A., Bronevetsky, G., Mohror, K., Supinski, B.R.d.: Design, modeling, and evaluation of a scalable multi-level checkpointing system. In: SC. ACM (2010)

    Google Scholar 

  24. Ferreira, K., Stearley, J., Laros, J.H.I., Oldfield, R., Pedretti, K., Brightwell, R., Riesen, R., Bridges, P.G., Arnold, D.: Evaluating the viability of process replication reliability for exascale systems. In: SC 2011. ACM (2011)

    Google Scholar 

  25. Fiala, D., Mueller, F., Engelmann, C., Riesen, R., Ferreira, K., Brightwell, R.: Detection and correction of silent data corruption for large-scale high-performance computing. In: SC. ACM (2012)

    Google Scholar 

  26. Casanova, H., Bougeret, M., Robert, Y., Vivien, F., Zaidouni, D.: Using group replication for resilience on exascale systems. Int. J. High Perform. Comput. Appl. 28(2), 210–224 (2014)

    Article  Google Scholar 

  27. Lyons, R.E., Vanderkulk, W.: The use of triple-modular redundancy to improve computer reliability. IBM J. Res. Dev. 6(2), 200–209 (1962)

    Article  MATH  Google Scholar 

  28. Avizienis, A., Laprie, J., Randell, B., Landwehr, C.E.: Basic concepts and taxonomy of dependable and secure computing. IEEE Trans. Dependable Sec. Comput. 1(1), 11–33 (2004)

    Article  Google Scholar 

  29. Huang, K.H., Abraham, J.A.: Algorithm-based fault tolerance for matrix operations. IEEE Trans. Comput. 33(6), 518–528 (1984)

    Article  MATH  Google Scholar 

  30. Bosilca, G., Delmas, R., Dongarra, J., Langou, J.: Algorithm-based fault tolerance applied to high performance computing. J. Parallel Distrib. Comput. 69(4), 410–416 (2009)

    Article  Google Scholar 

  31. Shantharam, M., Srinivasmurthy, S., Raghavan, P.: Fault tolerant preconditioned conjugate gradient for sparse linear system solution. In: ICS. ACM (2012)

    Google Scholar 

  32. Benson, A.R., Schmit, S., Schreiber, R.: Silent error detection in numerical time-stepping schemes. Int. J. High Perform. Comput. Appl. 29, 403–421 (2014)

    Article  Google Scholar 

  33. Sao, P., Vuduc, R.: Self-stabilizing iterative solvers. In: ScalA 2013 (2013)

    Google Scholar 

  34. Heroux, M., Hoemmen, M.: Fault-tolerant iterative methods via selective reliability. Research report SAND2011-3915 C, Sandia National Laboratories (2011)

    Google Scholar 

  35. Elliott, J., Hoemmen, M., Mueller, F.: Evaluating the impact of SDC on the GMRES iterative solver. In: IPDPS. IEEE (2014)

    Google Scholar 

  36. Bronevetsky, G., de Supinski, B.: Soft error vulnerability of iterative linear algebra methods. In: ICS. ACM (2008)

    Google Scholar 

  37. Berrocal, E., Bautista-Gomez, L., Di, S., Lan, Z., Cappello, F.: Lightweight silent data corruption detection based on runtime data analysis for HPC applications. In: HPDC. ACM (2015)

    Google Scholar 

  38. Bautista Gomez, L., Cappello, F.: Detecting silent data corruption through data dynamic monitoring for scientific applications. In: PPoPP. ACM (2014)

    Google Scholar 

  39. Bautista Gomez, L., Cappello, F.: Detecting and correcting data corruption in stencil applications through multivariate interpolation. In: FTS. IEEE (2015)

    Google Scholar 

  40. Bautista Gomez, L., Cappello, F.: Exploiting spatial smoothness in HPC applications to detect silent data corruption. In: HPCC. IEEE (2015)

    Google Scholar 

  41. Ciocca, E., Koren, I., Koren, Z., Krishna, C.M., Katz, D.S.: Application-level fault tolerance in the orbital thermal imaging spectrometer. In: PRDC. IEEE (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aurélien Cavelan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cavelan, A., Fang, A., Chien, A.A., Robert, Y. (2018). Resilient N-Body Tree Computations with Algorithm-Based Focused Recovery: Model and Performance Analysis. In: Jarvis, S., Wright, S., Hammond, S. (eds) High Performance Computing Systems. Performance Modeling, Benchmarking, and Simulation. PMBS 2017. Lecture Notes in Computer Science(), vol 10724. Springer, Cham. https://doi.org/10.1007/978-3-319-72971-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72971-8_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72970-1

  • Online ISBN: 978-3-319-72971-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics