Skip to main content

The Bone Health History and Physical Examination in Adolescents

  • Chapter
  • First Online:
A Practical Approach to Adolescent Bone Health
  • 476 Accesses

Abstract

The adolescent skeleton is a dynamic organ that is impacted by a wide variety of biological, hormonal, and behavioral processes. The bone-focused history and physical examination (H&P) is the primary care clinician’s best tool for eliciting the complex information needed to evaluate bone health in adolescent patients. While core elements of the H&P remain consistent, a bone-focused evaluation includes specific considerations to target the factors that affect skeletal health. This chapter will provide guidance in evaluating adolescents with known or suspected bone disorders, with an emphasis on recognizing features that contribute to skeletal disease and identifying opportunities to promote bone health.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vierucci F, Saggese G, Cimaz R. Osteoporosis in childhood. Curr Opin Rheumatol. 2017;29(5):535–46.

    Article  PubMed  Google Scholar 

  2. Krakow D, Rimoin DL. The skeletal dysplasias. Genet Med. 2010;12(6):327–41.

    Article  PubMed  Google Scholar 

  3. Troncone R, Kosova R. Short stature and catch-up growth in celiac disease. J Pediatr Gastroenterol Nutr. 2010;51(Suppl 3):S137–8.

    Article  PubMed  Google Scholar 

  4. Gasparetto M, Guariso G. Crohn’s disease and growth deficiency in children and adolescents. World J Gastroenterol. 2014;20(37):13219–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Smith EM, Foster HE, Beresford MW. Adding to complexity: comorbidity in paediatric rheumatic disease. Rheumatology (Oxford). 2013;52(1):22–33.

    Article  Google Scholar 

  6. He Q, Karlberg J. Bmi in childhood and its association with height gain, timing of puberty, and final height. Pediatr Res. 2001;49(2):244–51.

    Article  CAS  PubMed  Google Scholar 

  7. Puntis JW. Malnutrition and growth. J Pediatr Gastroenterol Nutr. 2010;51(Suppl 3):S125–6.

    Article  PubMed  Google Scholar 

  8. Touwslager RN, et al. Determinants of infant growth in four age windows: a twin study. J Pediatr. 2011;158(4):566–72.e2.

    Article  PubMed  Google Scholar 

  9. Krakow D. Skeletal dysplasias. Clin Perinatol. 2015;42(2):301–19. viii.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Roche AF, et al. Head circumference reference data: birth to 18 years. Pediatrics. 1987;79(5):706–12.

    CAS  PubMed  Google Scholar 

  11. Mazicioglu MM, et al. Age references for the arm span and stature of Turkish children and adolescents. Ann Hum Biol. 2009;36(3):308–19.

    Article  PubMed  Google Scholar 

  12. Turan S, et al. Upper segment/lower segment ratio and armspan-height difference in healthy Turkish children. Acta Paediatr. 2005;94(4):407–13.

    Article  PubMed  Google Scholar 

  13. Cho SY, Jin DK. Guidelines for genetic skeletal dysplasias for pediatricians. Ann Pediatr Endocrinol Metab. 2015;20(4):187–91.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Smits-Engelsman B, Klerks M, Kirby A. Beighton score: a valid measure for generalized hypermobility in children. J Pediatr. 2011;158(1):119–23, 123.e1–4.

    Article  PubMed  Google Scholar 

  15. Theintz G, et al. Longitudinal monitoring of bone mass accumulation in healthy adolescents: evidence for a marked reduction after 16 years of age at the levels of lumbar spine and femoral neck in female subjects. J Clin Endocrinol Metab. 1992;75(4):1060–5.

    CAS  PubMed  Google Scholar 

  16. Slemenda CW, et al. Influences on skeletal mineralization in children and adolescents: evidence for varying effects of sexual maturation and physical activity. J Pediatr. 1994;125(2):201–7.

    Article  CAS  PubMed  Google Scholar 

  17. Kasperk CH, et al. Gonadal and adrenal androgens are potent regulators of human bone cell metabolism in vitro. J Bone Miner Res. 1997;12(3):464–71.

    Article  CAS  PubMed  Google Scholar 

  18. Palmert MR, Dunkel L. Clinical practice. Delayed puberty. N Engl J Med. 2012;366(5):443–53.

    Article  CAS  PubMed  Google Scholar 

  19. Marshall WA, Tanner JM. Variations in the pattern of pubertal changes in boys. Arch Dis Child. 1970;45(239):13–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Marshall WA, Tanner JM. Variations in pattern of pubertal changes in girls. Arch Dis Child. 1969;44(235):291–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dimitri P, Wales JK, Bishop N. Fat and bone in children: differential effects of obesity on bone size and mass according to fracture history. J Bone Miner Res. 2010;25(3):527–36.

    Article  PubMed  Google Scholar 

  22. Kueper J, et al. Evidence for the adverse effect of starvation on bone quality: a review of the literature. Int J Endocrinol. 2015;2015:628740.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Goulding A, et al. Children who avoid drinking cow’s milk are at increased risk for prepubertal bone fractures. J Am Diet Assoc. 2004;104(2):250–3.

    Article  PubMed  Google Scholar 

  24. Cheng S, et al. Effects of calcium, dairy product, and vitamin D supplementation on bone mass accrual and body composition in 10-12-y-old girls: a 2-y randomized trial. Am J Clin Nutr. 2005;82(5):1115–26; quiz 1147-8.

    CAS  PubMed  Google Scholar 

  25. Huncharek M, Muscat J, Kupelnick B. Impact of dairy products and dietary calcium on bone-mineral content in children: results of a meta-analysis. Bone. 2008;43(2):312–21.

    Article  CAS  PubMed  Google Scholar 

  26. Sonneville KR, et al. Vitamin d, calcium, and dairy intakes and stress fractures among female adolescents. Arch Pediatr Adolesc Med. 2012;166(7):595–600.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Voortman T, et al. Vitamin D deficiency in school-age children is associated with sociodemographic and lifestyle factors. J Nutr. 2015;145(4):791–8.

    Article  CAS  PubMed  Google Scholar 

  28. van den Hooven EH, et al. Identification of a dietary pattern prospectively associated with bone mass in Australian young adults. Am J Clin Nutr. 2015;102(5):1035–43.

    Article  PubMed  Google Scholar 

  29. Budek AZ, et al. Dietary protein intake and bone mineral content in adolescents-The Copenhagen Cohort Study. Osteoporos Int. 2007;18(12):1661–7.

    Article  CAS  PubMed  Google Scholar 

  30. Ambroszkiewicz J, et al. The influence of vegan diet on bone mineral density and biochemical bone turnover markers. Pediatr Endocrinol Diabetes Metab. 2010;16(3):201–4.

    CAS  PubMed  Google Scholar 

  31. Becker PJ, et al. Consensus statement of the Academy of Nutrition and Dietetics/American Society for Parenteral and Enteral Nutrition: indicators recommended for the identification and documentation of pediatric malnutrition (undernutrition). J Acad Nutr Diet. 2014;114(12):1988–2000.

    Article  PubMed  Google Scholar 

  32. Lehtonen-Veromaa M, et al. A 1-year prospective study on the relationship between physical activity, markers of bone metabolism, and bone acquisition in peripubertal girls. J Clin Endocrinol Metab. 2000;85(10):3726–32.

    CAS  PubMed  Google Scholar 

  33. Mitchell JA, et al. Physical activity benefits the skeleton of children genetically predisposed to lower bone density in adulthood. J Bone Miner Res. 2016;31(8):1504–12.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Herrmann D, et al. Impact of physical activity, sedentary behaviour and muscle strength on bone stiffness in 2-10-year-old children-cross-sectional results from the IDEFICS study. Int J Behav Nutr Phys Act. 2015;12:112.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Vandenborne K, et al. Longitudinal study of skeletal muscle adaptations during immobilization and rehabilitation. Muscle Nerve. 1998;21(8):1006–12.

    Article  CAS  PubMed  Google Scholar 

  36. Epstein S, et al. Disorders associated with acute rapid and severe bone loss. J Bone Miner Res. 2003;18(12):2083–94.

    Article  PubMed  Google Scholar 

  37. Fung EB, et al. Rapid remineralization of the distal radius after forearm fracture in children. J Pediatr Orthop. 2011;31(2):138–43.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Rastogi A, et al. Celiac disease: a missed cause of metabolic bone disease. Indian J Endocrinol Metab. 2012;16(5):780–5.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Thearle M, et al. Osteoporosis: an unusual presentation of childhood Crohn’s disease. J Clin Endocrinol Metab. 2000;85(6):2122–6.

    CAS  PubMed  Google Scholar 

  40. Leonard MB. Glucocorticoid-induced osteoporosis in children: impact of the underlying disease. Pediatrics. 2007;119(Suppl 2):S166–74.

    Article  PubMed  Google Scholar 

  41. Sidoroff VH, et al. Inhaled corticosteroids and bone mineral density at school age: a follow-up study after early childhood wheezing. Pediatr Pulmonol. 2015;50(1):1–7.

    Article  PubMed  Google Scholar 

  42. Schwartz AM, Leonidas JC. Methotrexate osteopathy. Skelet Radiol. 1984;11(1):13–6.

    Article  CAS  Google Scholar 

  43. Divasta AD, Laufer MR, Gordon CM. Bone density in adolescents treated with a GnRH agonist and add-back therapy for endometriosis. J Pediatr Adolesc Gynecol. 2007;20(5):293–7.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Scholes D, et al. Change in bone mineral density among adolescent women using and discontinuing depot medroxyprogesterone acetate contraception. Arch Pediatr Adolesc Med. 2005;159(2):139–44.

    Article  PubMed  Google Scholar 

  45. Kaunitz AM, Arias R, McClung M. Bone density recovery after depot medroxyprogesterone acetate injectable contraception use. Contraception. 2008;77(2):67–6.

    Google Scholar 

  46. Arora E, Singh H, Gupta YK. Impact of antiepileptic drugs on bone health: need for monitoring, treatment, and prevention strategies. J Family Med Prim Care. 2016;5(2):248–53.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Gajic-Veljanoski O, et al. Effects of long-term low-molecular-weight heparin on fractures and bone density in non-pregnant adults: a systematic review with meta-analysis. J Gen Intern Med. 2016;31(8):947–57.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Lim LS, et al. Loop diuretic use and increased rates of hip bone loss in older men: the Osteoporotic Fractures in Men Study. Arch Intern Med. 2008;168(7):735–40.

    Article  PubMed  Google Scholar 

  49. Rejnmark L, et al. Loop diuretics increase bone turnover and decrease BMD in osteopenic postmenopausal women: results from a randomized controlled study with bumetanide. J Bone Miner Res. 2006;21(1):163–70.

    Article  CAS  PubMed  Google Scholar 

  50. Freedberg DE, Kim LS, Yang YX. The risks and benefits of long-term use of proton pump inhibitors: expert review and best practice advice from the American Gastroenterological Association. Gastroenterology. 2017;152(4):706–15.

    Article  CAS  PubMed  Google Scholar 

  51. Estrada K, et al. Genome-wide meta-analysis identifies 56 bone mineral density loci and reveals 14 loci associated with risk of fracture. Nat Genet. 2012;44(5):491–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Medina-Gomez C, et al. BMD loci contribute to ethnic and developmental differences in skeletal fragility across populations: assessment of evolutionary selection pressures. Mol Biol Evol. 2015;32(11):2961–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Loud KJ, et al. Family history predicts stress fracture in active female adolescents. Pediatrics. 2007;120(2):e364–72.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Reamy BV, Slakey JB. Adolescent idiopathic scoliosis: review and current concepts. Am Fam Physician. 2001;64(1):111–6.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alison M. Boyce .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Boyce, A.M. (2018). The Bone Health History and Physical Examination in Adolescents. In: Pitts, S., Gordon, C. (eds) A Practical Approach to Adolescent Bone Health . Springer, Cham. https://doi.org/10.1007/978-3-319-72880-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72880-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72879-7

  • Online ISBN: 978-3-319-72880-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics