Skip to main content

Data Collection in Population Protocols with Non-uniformly Random Scheduler

  • Conference paper
  • First Online:
Algorithms for Sensor Systems (ALGOSENSORS 2017)

Abstract

Contrary to many previous studies on population protocols using the uniformly random scheduler, we consider a more general non-uniform case. Here, pair-wise interactions between agents (moving and communicating devices) are assumed to be drawn non-uniformly at random. While such a scheduler is known to be relevant for modeling many practical networks, it is also known to make the formal analysis more difficult.

This study concerns data collection, a fundamental problem in mobile sensor networks (one of the target networks of population protocols). In this problem, pieces of information given to the agents (e.g., sensed values) should be delivered eventually to a predefined sink node without loss or duplication. Following an idea of the known deterministic protocol \({\mathrm {TTF}}\) solving this problem, we propose an adapted version of it and perform a complete formal analysis of execution times in expectation and with high probability (w.h.p.).

We further investigate the non-uniform model and address the important issue of energy consumption. The goal is to improve \({\mathrm {TTF}}\) in terms of energy complexity, while still keeping good time complexities (in expectation and w.h.p.). Namely, we propose a new parametrized protocol for data collection, called lazy \({\mathrm {TTF}}\), and present a study showing that a good choice of the protocol parameters can improve energy performances (compared to \({\mathrm {TTF}}\)), at a slight expense of time performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    An event \(\varXi \) is said to occur w.h.p., if \(\mathbb {P}(\varXi )\ge 1-\frac{1}{n^c}\), where \(c\ge 1\).

References

  1. Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation in networks of passively mobile finite-state sensors. In: Proceedings of 23rd Annual ACM Symposium on Principles of Distributed Computing, pp. 290–299 (2004)

    Google Scholar 

  2. Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation in networks of passively mobile finite-state sensors. Distrib. Comput. 18(4), 235–253 (2006)

    Article  MATH  Google Scholar 

  3. Angluin, D., Aspnes, J., Eisenstat, D.: Fast computation by population protocols with a leader. In: Dolev, S. (ed.) DISC 2006. LNCS, vol. 4167, pp. 61–75. Springer, Heidelberg (2006). https://doi.org/10.1007/11864219_5

    Chapter  Google Scholar 

  4. Alistarh, D., Gelashvili, R., Vojnović, M.: Fast and exact majority in population protocols. In: Proceedings of 2015 ACM Symposium on Principles of Distributed Computing, pp. 47–56. ACM (2015)

    Google Scholar 

  5. Aspnes, J., Beauquier, J., Burman, J., Sohier, D.: Time and space optimal counting in population protocols. In: OPODIS 2016, pp. 13:1–13:17 (2016)

    Google Scholar 

  6. Sharma, G., Mazumdar, R.R.: Scaling laws for capacity and delay in wireless ad hoc networks with random mobility. In: 2004 IEEE International Conference on Communications, vol. 7, pp. 3869–3873 (2004)

    Google Scholar 

  7. Cai, H., Eun, D.Y.: Crossing over the bounded domain: from exponential to power-law inter-meeting time in manet. In: Proceedings of 13th Annual ACM International Conference on Mobile Computing and Networking, pp. 159–170 (2007)

    Google Scholar 

  8. Zhu, H., Fu, L., Xue, G., Zhu, Y., Li, M., Ni, L.M.: Recognizing exponential inter-contact time in vanets. In: 2010 Proceedings of INFOCOM, pp. 1–5 (2010)

    Google Scholar 

  9. Gao, W., Cao, G.: User-centric data dissemination in disruption tolerant networks. In: Proceedings of IEEE INFOCOM 2011, pp. 3119–3127 (2011)

    Google Scholar 

  10. Beauquier, J., Burman, J., Clement, J., Kutten, S.: On utilizing speed in networks of mobile agents. In: Proceedings of 29th ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing, pp. 305–314 (2010)

    Google Scholar 

  11. Xu, C., Burman, J., Beauquier, J.: Power-aware population protocols. In: 2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS), pp. 2067–2074, June 2017

    Google Scholar 

  12. Beauquier, J., Burman, J., Kutten, S., Nowak, T., Xu, C.: Data collection in population protocols with non-uniformly random scheduler. Research report, July 2017. https://hal.archives-ouvertes.fr/hal-01567322

  13. Alistarh, D., Aspnes, J., Eisenstat, D., Gelashvili, R., Rivest, R.L.: Time-space trade-offs in population protocols. In: Proceedings of 28th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2017, pp. 2560–2579 (2017)

    Google Scholar 

  14. Tel, G.: Introduction to Distributed Algorithms, 2nd edn. Cambridge University Press, Cambridge (2000). https://doi.org/10.1017/CBO9781139168724

    Book  MATH  Google Scholar 

  15. Flajolet, P., Gardy, D., Thimonier, L.: Birthday paradox, coupon collectors, caching algorithms and self-organizing search. Discret. Appl. Math. 39(3), 207–229 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  16. Guerraoui, R., Ruppert, E.: Names trump malice: tiny mobile agents can tolerate byzantine failures. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5556, pp. 484–495. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02930-1_40

    Chapter  Google Scholar 

  17. Angluin, D., Aspnes, J., Eisenstat, D.: A simple population protocol for fast robust approximate majority. Distrib. Comput. 21, 87–102 (2008)

    Article  MATH  Google Scholar 

  18. Stadje, W.: The collector’s problem with group drawings. Adv. Appl. Probab. 22(4), 866–882 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  19. Adler, I., Ross, S.M.: The coupon subset collection problem. J. Appl. Probab. 38, 737–746 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ferrante, M., Saltalamacchia, M.: The coupon collector’s problem. Mater. Matemàtics 2014(2), 35 (2014)

    Google Scholar 

  21. Nakata, T.: Coupon collector’s problem with unlike probabilities (2008, preprint)

    Google Scholar 

  22. Tsitsiklis, J.N., Bertsekas, D.P., Athans, M.: Distributed asynchronous deterministic and stochastic gradient optimization algorithms. In: American Control Conference 1984, pp. 484–489 (1984)

    Google Scholar 

  23. Jadbabaie, A., Lin, J., Morse, A.S.: Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Trans. Autom. Control 48(6), 988–1001 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ren, W., Beard, R.W., et al.: Consensus seeking in multiagent systems under dynamically changing interaction topologies. IEEE Trans. Autom. Control 50(5), 655–661 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. Vandenberghe, L., Boyd, S.: Semidefinite programming. SIAM Rev. 38(1), 49–95 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  26. Helmberg, C., Rendl, F., Vanderbei, R.J., Wolkowicz, H.: An interior-point method for semidefinite programming. SIAM J. Optim. 6(2), 342–361 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  27. Razzaque, M.A., Dobson, S.: Energy-efficient sensing in wireless sensor networks using compressed sensing. Sensors 14(2), 2822–2859 (2014)

    Article  Google Scholar 

  28. Rajendran, V., Obraczka, K., Garcia-Luna-Aceves, J.J.: Energy-efficient, collision-free medium access control for wireless sensor networks. Wirel. Netw. 12(1), 63–78 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Janna Burman or Chuan Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Beauquier, J., Burman, J., Kutten, S., Nowak, T., Xu, C. (2017). Data Collection in Population Protocols with Non-uniformly Random Scheduler. In: Fernández Anta, A., Jurdzinski, T., Mosteiro, M., Zhang, Y. (eds) Algorithms for Sensor Systems. ALGOSENSORS 2017. Lecture Notes in Computer Science(), vol 10718. Springer, Cham. https://doi.org/10.1007/978-3-319-72751-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72751-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72750-9

  • Online ISBN: 978-3-319-72751-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics