Skip to main content

Model Based Compensation for Low Mass Objects Haptic Manipulation in Virtual Environments

  • Conference paper
  • First Online:
Virtual Reality and Augmented Reality (EuroVR 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10700))

Included in the following conference series:

Abstract

This paper aims at presenting a model based compensation command law developed in order to enhance the transparency of haptic interfaces for low mass objects manipulations in virtual environments. After presenting the context and related work of the study, the model based compensation command law is developed and implemented on a 6-dofs haptic interface. Uncertainties of the model (friction coefficients) are then tuned thanks to an experimental protocol enabling a subjective comparison between real and virtual manipulations of a low mass object. Results of this experimentation are presented and discussed. The compensation of friction on the first and second axes of the haptic interface showed significant improvement of both realism and perceived load. A short conclusion opens perspectives to this work at the end of the paper. Such a work has the potential to enhance the fidelity of interaction for applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nguyen, H., Pontonnier, C., Hilt, S., Duval, T., Dumont, G.: VR-based operating modes and metaphors for collaborative ergonomic design of industrial workstations. J. Multimodal User Interfaces 11(1), 97–111 (2017)

    Article  Google Scholar 

  2. Mavrikios, D., Karabatsou, V., Pappas, M., Chryssolouris, G.: An efficient approach to human motion modeling for the verification of human-centric product design and manufacturing in virtual environments. Robot. Comput.-Integr. Manuf. 23(5), 533–543 (2007)

    Article  Google Scholar 

  3. Pappas, M., Karabatsou, V., Mavrikios, D., Chryssolouris, G.: Ergonomic evaluation of virtual assembly tasks. In: Cunha, P.F., Maropoulos, P.G. (eds.) Digital Enterprise Technology, pp. 511–518. Springer, Heidelberg (2007). https://doi.org/10.1007/978-0-387-49864-5_60

    Chapter  Google Scholar 

  4. Pontonnier, C., Samani, A., Badawi, M., Madeleine, P., Dumont, G.: Assessing the ability of a VR-based assembly task simulation to evaluate physicalrisk factors. IEEE Trans. Vis. Comput. Graph. 20(5), 664–674 (2014)

    Article  Google Scholar 

  5. Samani, A., Pontonnier, C., Dumont, G., Madeleine, P.: Kinematic synergy in a real and a virtual simulated assembly task. In: 19th Triennal Congress of the International Ergonomics Association (IEA 2015) (2015)

    Google Scholar 

  6. Samani, A., Pontonnier, C., Dumont, G., Madeleine, P.: Shoulder kinematics and spatial pattern of trapezius electromyographic activity in real and virtual environments. PLoS ONE 10(3), e0116211 (2015)

    Article  Google Scholar 

  7. Pontonnier, C., Dumont, G., Samani, A., Madeleine, P., Badawi, M.: Designing and evaluating a workstation in real and virtual environment: toward virtual reality based ergonomic design sessions. J. Multimodal User Interfaces 8(2), 199–208 (2014)

    Article  Google Scholar 

  8. Sagardia, M., Hulin, T.: Multimodal evaluation of the differences between real and virtual assemblies. IEEE Trans. Haptics PP(99), 1 (2017)

    Article  Google Scholar 

  9. Baser, O., Gurocak, H., Konukseven, E.I.: Hybrid control algorithm to improve both stable impedance range and transparency in haptic devices. Mechatronics 23(1), 121–134 (2013)

    Article  Google Scholar 

  10. Bernstein, N.L., Lawrence, D.A., Pao, L.Y.: Friction modeling and compensation for haptic interfaces. In: First Joint Eurohaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems. World Haptics Conference, pp. 290–295, March 2005

    Google Scholar 

  11. Lyapunov, A.M.: The general problem of the stability of motion. Int. J. Control 55(3), 531–534 (1992)

    Article  MathSciNet  Google Scholar 

  12. Dang, Q.V.: Conception et commande d’une interface haptique à retour d’effort pour la CAO. Ph.D. thesis, Université de Valenciennes et du Hainaut-Cambresis (2013)

    Google Scholar 

  13. Colgate, J.E., Schenkel, G.: Passivity of a class of sampled-data systems: application to haptic interfaces. In: American Control Conference, vol. 3, pp. 3236–3240, June 1994

    Google Scholar 

  14. Colgate, J.E., Brown, J.M.: Factors affecting the Z-width of a haptic display. In: Proceedings of the 1994 IEEE International Conference on Robotics and Automation, pp. 3205–3210. IEEE (1994)

    Google Scholar 

  15. Mehling, J.S., Colgate, J.E., Peshkin, M.A.: Increasing the impedance range of a haptic display by adding electrical damping. In: First Joint Eurohaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, World Haptics 2005, pp. 257–262. IEEE (2005)

    Google Scholar 

  16. Weir, D.W., Colgate, J.E., Peshkin, M.A.: Measuring and increasing Z-width with active electrical damping. In: Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, Haptics 2008, pp. 169–175. IEEE (2008)

    Google Scholar 

  17. Hannaford, B., Ryu, J.H.: Time-domain passivity control of haptic interfaces. IEEE Trans. Robot. Autom. 18(1), 1–10 (2002)

    Article  Google Scholar 

  18. Ryu, J.H., Kim, Y.S., Hannaford, B.: Sampled-and continuous-time passivity and stability of virtual environments. IEEE Trans. Robot. 20(4), 772–776 (2004)

    Article  Google Scholar 

  19. Ryu, J.H., Preusche, C., Hannaford, B., Hirzinger, G.: Time domain passivity control with reference energy following. IEEE Trans. Control Syst. Technol. 13(5), 737–742 (2005)

    Article  Google Scholar 

  20. Lim, Y.A., Ahn, H.S., Ryu, J.: Analogue input shaper for haptic interfaces. IET Control Theory Appl. 3(12), 1553–1564 (2009)

    Article  Google Scholar 

  21. Lee, K., Lee, D.Y.: Adjusting output-limiter for stable haptic rendering in virtual environments. IEEE Trans. Control Syst. Technol. 17(4), 768–779 (2009)

    Article  Google Scholar 

  22. Franken, M., Stramigioli, S., Reilink, R., Secchi, C., Macchelli, A.: Bridging the gap between passivity and transparency. Robotics Science and Systems (2009)

    Google Scholar 

  23. Franken, M., Stramigioli, S., Misra, S., Secchi, C., Macchelli, A.: Bilateral telemanipulation with time delays: a two-layer approach combining passivity and transparency. IEEE Trans. Robot. 27(4), 741–756 (2011)

    Article  Google Scholar 

  24. McJunkin, S.T.: Transparency improvement for haptic interfaces. Ph.D. thesis, Rice University (2007)

    Google Scholar 

  25. Lee, H.K., Shin, M.H., Chung, M.J.: Adaptive controller of master-slave systems for transparent teleoperation. In: Proceedings of the 8th International Conference on Advanced Robotics, ICAR 1997, pp. 1021–1026. IEEE (1997)

    Google Scholar 

  26. Carignan, C.R., Cleary, K.R.: Closed-loop force control for haptic simulation of virtual environments. The Electronic Journal of Haptics Research (2000)

    Google Scholar 

  27. Frisoli, A., Sotgiu, E., Avizzano, C., Checcacci, D., Bergamasco, M.: Force-based impedance control of a haptic master system for teleoperation. Sens. Rev. 24(1), 42–50 (2004)

    Article  Google Scholar 

  28. Baser, O., Konukseven, E.I.: Utilization of motor current based torque feedback to improve the transparency of haptic interfaces. Mech. Mach. Theory 52, 78–93 (2012)

    Article  Google Scholar 

  29. Baser, O., Konukseven, E.I., Gurocak, H.: Transparency improvement in haptic devices with a torque compensator using motor current. In: Isokoski, P., Springare, J. (eds.) EuroHaptics 2012. LNCS, vol. 7282, pp. 37–46. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31401-8_4

    Chapter  Google Scholar 

  30. Kee, D., Lee, I.: Relationships between subjective and objective measures in assessing postural stresses. Appl. Ergon. 43(2), 277–282 (2012). Special Section on Product Comfort

    Article  Google Scholar 

  31. Hu, B., Ma, L., Zhang, W., Salvendy, G., Chablat, D., Bennis, F.: Predicting real-world ergonomic measurements by simulation in a virtual environment. Int. J. Ind. Ergon. 41(1), 64–71 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Hilt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hilt, S., Pontonnier, C., Dumont, G. (2017). Model Based Compensation for Low Mass Objects Haptic Manipulation in Virtual Environments. In: Barbic, J., D'Cruz, M., Latoschik, M., Slater, M., Bourdot, P. (eds) Virtual Reality and Augmented Reality. EuroVR 2017. Lecture Notes in Computer Science(), vol 10700. Springer, Cham. https://doi.org/10.1007/978-3-319-72323-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72323-5_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72322-8

  • Online ISBN: 978-3-319-72323-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics