Skip to main content

An Efficient Statistical Data Representation for Real-Time Rendering of Metallic Effect Car Paints

  • Conference paper
  • First Online:
Virtual Reality and Augmented Reality (EuroVR 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10700))

Included in the following conference series:

Abstract

Realistic virtual reality applications require highly-detailed geometry as well es convincing surface representations. In many applications, especially in the automotive industry, the realistic rendering of metallic effect paints is necessary. Due to their complex appearance, this is a demanding problem. Previous methods either use a computationally heavy-weight and often hand-tuned simulation approach or a data-driven approach. The former are thus not well-suited for real-time applications. The latter have the advantage of lower computational complexity and virtually no manual hand-tuning, but the disadvantage of requiring large amounts of the graphics card’s memory, making them problematic for larger scenes with numerous materials as required in VR applications. In this paper, we describe an efficient representation for metallic car paints, based on computing the statistical properties of measured real-world samples. Our approach is suited for real-time rendering, poses only moderate requirements on the computing power, uses a low amount of memory and displays high-quality results, as shown in our evaluation section. As an additional advantage, our representation allows the generation of BTFs of arbitrary resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Atanasov, A., Koylazov, V.: A practical stochastic algorithm for rendering mirror-like flakes. In: ACM SIGGRAPH 2016 Talks, p. 67. ACM (2016)

    Google Scholar 

  2. Baolong, G., Xiang, F.: A modified octree color quantization algorithm. In: First International Conference on Communications and Networking in China, ChinaCom 2006, pp. 1–3. IEEE (2006)

    Google Scholar 

  3. Cook, R.L., Torrance, K.E.: A reflectance model for computer graphics. ACM Trans. Graph. (TOG) 1(1), 7–24 (1982)

    Article  Google Scholar 

  4. Debevec, P., Hawkins, T., Tchou, C., Duiker, H.P., Sarokin, W., Sagar, M.: Acquiring the reflectance field of a human face. In: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, pp. 145–156. ACM Press/Addison-Wesley Publishing Co. (2000)

    Google Scholar 

  5. Dischler, J.M.: Efficiently rendering macro geometric surface structures with bi-directional texture functions. Render. Tech. 98, 169–180 (1998)

    Article  Google Scholar 

  6. Dorsey, J., Rushmeier, H., Sillion, F.: Digital Modeling of Material Appearance. Morgan Kaufmann, San Francisco (2010)

    Google Scholar 

  7. Dumont-Bècle, P., Ferley, E., Kemeny, A., Michelin, S., Arquès, D.: Multi-texturing approach for paint appearance simulation on virtual vehicles. In: Proceedings of the Driving Simulation Conference, pp. 123–133 (2001)

    Google Scholar 

  8. Ďurikovič, R., Martens, W.L.: Simulation of sparkling and depth effect in paints. In: Proceedings of the 19th Spring Conference on Computer Graphics, pp. 193–198. ACM (2003)

    Google Scholar 

  9. Ďurikovič, R., Mihálik, A.: Metallic paint appearance measurement and rendering. J. Appl. Math. Stat. Inform. 9(2), 25–39 (2013)

    Google Scholar 

  10. Ershov, S., Ďurikovič, R., Kolchin, K., Myszkowski, K.: Reverse engineering approach to appearance-based design of metallic and pearlescent paints. Vis. Comput. 20(8–9), 586–600 (2004)

    Google Scholar 

  11. Ershov, S., Khodulev, A., Kolchin, K.: Simulation of sparkles in metallic paints. In: Proceeding of Graphicon, pp. 121–128 (1999)

    Google Scholar 

  12. Ershov, S., Kolchin, K., Myszkowski, K.: Rendering pearlescent appearance based on paint-composition modelling. In: Computer Graphics Forum, vol. 20, pp. 227–238. Wiley Online Library (2001)

    Google Scholar 

  13. Gervautz, M., Purgathofer, W.: A simple method for color quantization: octree quantization. New Trends Comput. Graph. Proceedings of CG International 1988, 219–231 (1988)

    Google Scholar 

  14. Guarnera, D., Guarnera, G.C., Ghosh, A., Denk, C., Glencross, M.: BRDF representation and acquisition. In: Computer Graphics Forum, vol. 35, pp. 625–650. Wiley Online Library (2016)

    Google Scholar 

  15. Guarnera, G.C., Ghosh, A., Hall, I., Glencross, M., Guarnera, D.: Material capture and representation with applications in virtual reality. In: ACM SIGGRAPH 2017 Courses, p. 6. ACM (2017)

    Google Scholar 

  16. Günther, J., Chen, T., Goesele, M., Wald, I., Seidel, H.P.: Efficient acquisition and realistic rendering of car paint. In: Vision, Modeling, and Visualization, vol. 5, pp. 487–494 (2005)

    Google Scholar 

  17. Jakob, W., Hašan, M., Yan, L.Q., Lawrence, J., Ramamoorthi, R., Marschner, S.: Discrete stochastic microfacet models. ACM Trans. Graph. (TOG) 33(4), 115 (2014)

    Google Scholar 

  18. Kajiya, J.T.: The rendering equation. In: ACM Siggraph Computer Graphics, vol. 20, pp. 143–150. ACM (1986)

    Google Scholar 

  19. Kitaguchi, S.: Modelling texture appearance of gonioapparent objects. Ph.D. thesis. University of Leeds (2008)

    Google Scholar 

  20. Kurt, M., Szirmay-Kalos, L., Křivánek, J.: An anisotropic BRDF model for fitting and monte carlo rendering. ACM SIGGRAPH Comput. Graph. 44(1), 3 (2010)

    Article  Google Scholar 

  21. Löw, J., Kronander, J., Ynnerman, A., Unger, J.: BRDF models for accurate and efficient rendering of glossy surfaces. ACM Trans. Graph. (TOG) 31(1), 9 (2012)

    Article  Google Scholar 

  22. Müller, G., Lamy, F.: AxF - appearance exchange format. Technical report, X-Rite Inc., 4300 44th St. SE, Grand Rapids, MI 49505 (2015). version 1.0

    Google Scholar 

  23. Ngan, A., Durand, F., Matusik, W.: Experimental analysis of BRDF models. Rendering Techniques 2005 (16th), 2 (2005)

    Google Scholar 

  24. Raymond, B., Guennebaud, G., Barla, P.: Multi-scale rendering of scratched materials using a structured SV-BRDF model. ACM Trans. Graph. (TOG) 35(4), 57 (2016)

    Article  Google Scholar 

  25. Rump, M., Müller, G., Sarlette, R., Koch, D., Klein, R.: Photo-realistic rendering of metallic car paint from image-based measurements. In: Computer Graphics Forum, vol. 27, pp. 527–536. Wiley Online Library (2008)

    Google Scholar 

  26. Rump, M., Sarlette, R., Klein, R.: Efficient resampling, compression and rendering of metallic and pearlescent paint. In: VMV, pp. 11–18 (2009)

    Google Scholar 

  27. Schlick, C.: An inexpensive BRDF model for physically-based rendering. In: Computer Graphics Forum, vol. 13, pp. 233–246. Wiley Online Library (1994)

    Google Scholar 

  28. Takagi, A., Takaoka, H., Oshima, T., Ogata, Y.: Accurate rendering technique based on colorimetric conception. In: ACM SIGGRAPH Computer Graphics, vol. 24, pp. 263–272. ACM (1990)

    Google Scholar 

  29. Takagi, A., Watanabe, A., Baba, G.: Prediction of spectral reflectance factor distribution of automotive paint finishes. Color Res. Appl. 30(4), 275–282 (2005)

    Article  Google Scholar 

  30. Yan, L.Q., Hašan, M., Jakob, W., Lawrence, J., Marschner, S., Ramamoorthi, R.: Rendering glints on high-resolution normal-mapped specular surfaces. ACM Trans. Graph. (TOG) 33(4), 116 (2014)

    Google Scholar 

  31. Yan, L.Q., Hašan, M., Marschner, S., Ramamoorthi, R.: Position-normal distributions for efficient rendering of specular microstructure. ACM Trans. Graph. (TOG) 35(4), 56 (2016)

    Google Scholar 

Download references

Acknowledgments

We would like to thank Volkswagen and X-Rite for providing measurements of the metallic paints. Uffizi Gallery Light Probe Image ©1999 Paul Debevec, http://www.debevec.org/Probes/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim Golla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Golla, T., Klein, R. (2017). An Efficient Statistical Data Representation for Real-Time Rendering of Metallic Effect Car Paints. In: Barbic, J., D'Cruz, M., Latoschik, M., Slater, M., Bourdot, P. (eds) Virtual Reality and Augmented Reality. EuroVR 2017. Lecture Notes in Computer Science(), vol 10700. Springer, Cham. https://doi.org/10.1007/978-3-319-72323-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72323-5_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72322-8

  • Online ISBN: 978-3-319-72323-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics