Skip to main content

Graph Editing to a Given Neighbourhood Degree List is Fixed-Parameter Tractable

  • Conference paper
  • First Online:
Combinatorial Optimization and Applications (COCOA 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10628))

Abstract

Graph editing problems ask whether an input graph can be modified to a graph with a given property by inserting and deleting vertices and edges. We consider the problem Graph Edit to NDL, which asks whether a graph can be modified to a graph with a given neighbourhood degree list (NDL) using at most \(\ell \) graph edits. The NDL lists the degrees of the neighbours of vertices in a graph, and is a stronger invariant than the degree sequence, which lists the degrees of vertices. In fact, the degree sequence of a graph is determined by its NDL.

We show that Graph Edit to NDL is W[1]-hard when parameterized by \(\ell \) and give an algorithm that runs in fixed-parameter time when parameterized by \(\varDelta +\ell \), where \(\varDelta \) is the maximum degree of the input graph. Furthermore, we adapt our algorithm to solve a harder problem, Constrained Graph Edit to NDL, which imposes constraints on the NDLs of the intermediate graphs produced in the sequence, in fixed-parameter time when parameterized by \(\varDelta +\ell \).

Moreover, there exist graph measures such as assortativity [17] and average nearest neighbour degree [18] that can be derived from the NDL, but not the degree sequence. Our algorithm can be adapted to solve the problem of editing to a graph with a given value of such a measure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Barrus, M.D., Donovan, E.: Neighborhood degree lists of graphs. arXiv preprint. arXiv:1507.08212 (2015)

  2. Bazgan, C., Nichterlein, A.: Parameterized inapproximability of degree anonymization. In: Cygan, M., Heggernes, P. (eds.) IPEC 2014. LNCS, vol. 8894, pp. 75–84. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13524-3_7

    Google Scholar 

  3. Casas-Roma, J., Herrera-Joancomartí, J., Torra, V.: A summary of k-degree anonymous methods for privacy-preserving on networks. In: Navarro-Arribas, G., Torra, V. (eds.) Advanced Research in Data Privacy. Studies in Computational Intelligence, vol. 567, pp. 231–250. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-09885-2_13

    Google Scholar 

  4. Diestel, R.: Graph Theory. Graduate Texts in Mathematics, vol. 101. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  5. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity, vol. 4. Springer, London (2013). https://doi.org/10.1007/978-1-4471-5559-1

    Book  MATH  Google Scholar 

  6. Eppstein, D.: Diameter and treewidth in minor-closed graph families. Algorithmica 27(3–4), 275–291 (1999)

    MATH  MathSciNet  Google Scholar 

  7. Ferrara, M.: Some problems on graphic sequences. Graph Theor. Notes New York 64, 19–25 (2013)

    MathSciNet  Google Scholar 

  8. Frick, M., Grohe, M.: Deciding first-order properties of locally tree-decomposable structures. J. ACM 48(6), 1184–1206 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  9. Goldberg, P.W., Golumbic, M.C., Kaplan, H., Shamir, R.: Four strikes against physical mapping of DNA. J. Comput. Biol. 2(1), 139–152 (1995)

    Article  Google Scholar 

  10. Golovach, P.A., Mertzios, G.B.: Graph editing to a given degree sequence. In: Kulikov, A.S., Woeginger, G.J. (eds.) CSR 2016. LNCS, vol. 9691, pp. 177–191. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-34171-2_13

    Google Scholar 

  11. Harary, F.: A survey of the reconstruction conjecture. In: Bari, R.A., Harary, F. (eds.) Graphs and Combinatorics, pp. 18–28. Springer, Heidelberg (1974). https://doi.org/10.1007/BFb0066431

    Chapter  Google Scholar 

  12. van den Heuvel, J.: The complexity of change. Surv. Comb. 409, 127–160 (2013)

    MATH  MathSciNet  Google Scholar 

  13. Kelly, P.J.: A congruence theorem for trees. Pac. J. Math. 7(1), 961–968 (1957)

    Article  MATH  MathSciNet  Google Scholar 

  14. Mathieson, L., Szeider, S.: The parameterized complexity of regular subgraph problems and generalizations. In: Proceedings of the Fourteenth Symposium on Computing: The Australasian Theory, vol. 77, pp. 79–86. Australian Computer Society, Inc. (2008)

    Google Scholar 

  15. Mathieson, L., Szeider, S.: Editing graphs to satisfy degree constraints: a parameterized approach. J. Comput. Syst. Sci. 78(1), 179–191 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  16. Moser, H., Thilikos, D.M.: Parameterized complexity of finding regular induced subgraphs. J. Discrete Algorithms 7(2), 181–190 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  17. Newman, M.E.J.: Assortative mixing in networks. Phys. Rev. Lett. 89(20), 208701 (2002)

    Article  Google Scholar 

  18. Pastor-Satorras, R., Vázquez, A., Vespignani, A.: Dynamical and correlation properties of the internet. Phys. Rev. Lett. 87(25), 258701-1–258701-4 (2001)

    Article  Google Scholar 

  19. Plesník, J.: A note on the complexity of finding regular subgraphs. Discrete Math. 49(2), 161–167 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  20. Stewart, I.A.: Finding regular subgraphs in both arbitrary and planar graphs. Discrete Appl. Math. 68(3), 223–235 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  21. Ulam, S.M.: A Collection of Mathematical Problems. Interscience Publishers, New York (1960)

    MATH  Google Scholar 

  22. Young, A.: On quantitative substitutional analysis. Proc. Lond. Math. Soc. 2(1), 196–230 (1932)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vijay Subramanya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nishimura, N., Subramanya, V. (2017). Graph Editing to a Given Neighbourhood Degree List is Fixed-Parameter Tractable. In: Gao, X., Du, H., Han, M. (eds) Combinatorial Optimization and Applications. COCOA 2017. Lecture Notes in Computer Science(), vol 10628. Springer, Cham. https://doi.org/10.1007/978-3-319-71147-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71147-8_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71146-1

  • Online ISBN: 978-3-319-71147-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics