Skip to main content

Stereogrammetric Shapes of Mineral Dust Particles

  • Chapter
  • First Online:
Springer Series in Light Scattering

Part of the book series: Springer Series in Light Scattering ((SSLS))

  • 1083 Accesses

Abstract

This chapter considers shape models which are retrieved from scanning electron microscope (SEM) images of real dust particles. These models describe the real shape of the particle as measured from the images with automated image processing techniques. A general description of methods for retrieving the shape from SEM stereo images is provided together with our own developments based on dense image matching techniques. Light scattering results using the realistic shape models are presented and compared with those obtained using simplified mathematical shape models such as spheres, spheroids, and Gaussian random spheres. The impact of surface roughness on light scattering is addressed and ideas for further improvement of the shape retrieval algorithms in view of the light scattering computations are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Bay H, Ess A, Tuytelaars T, Van Gool L (2008) Speeded-Up Robust Features (SURF). Comput Vis Image Und 110(3):346–59

    Article  Google Scholar 

  • Burkhardt R (1981) Die stereoskopische Ausmessung elektronenmikroskopischer Bildpaare und ihre Genauigkeit. Methodensammlung der Elektronenmikroskopie 10:1–59

    Google Scholar 

  • Canny J (1986) A computational approach to edge detection. IEEE Trans Pattern Anal 8(6):679–98

    Article  Google Scholar 

  • Carli L (2010) 3D-SEM Metrology for Coordinate Measurements at the Nanometer Scale. PhD Thesis, Technical University of Denmark, 266 p

    Google Scholar 

  • Carli L, Genta G, Cantatore A, Barbato G, De Chiffre L, Levi R (2011) Uncertainty evaluation for three-dimensional scanning electron microscope reconstructions based on the stereo-pair technique. Meas Sci Technol 22(035103):1–11

    Google Scholar 

  • Cavegn S, Haala N, Nebiker S, Rothermel M, Tutzauer P (2014) Benchmarking high density image matching for oblique airborne imagery. Int Arch Photogramm Remote Sens Spatial Inform Sci XL-3: 45–52

    Google Scholar 

  • Cornille N, Garcia D, Sutton MA, McNeill SR, Orteu J-J (2003) Automated 3-D reconstruction using a scanning electron microscope. In: SEM Annual Conference Proceedings - Exposition on Experiment Applied Mechanics, 8 p

    Google Scholar 

  • Danzl R, Mershon WJ, Helmli F, Scherer S (2007) 3D Reconstruction and matching of fractured surfaces using images from scanning electron microscopes. Microsc Microanal 13(S02):1666–7

    Article  Google Scholar 

  • Electron Microscopy Sciences. http://www.emsdiasum.com/microscopy/products/sem/3dSEM.aspx. Accessed 17 March 2016

  • Förstner W, Gülch E (1987) Fast operator for detection and precise location of distinct points, corners and centres of circular features. In: Proceedings of the ISPRS Intercommission Conference on Fast Processing of Photogrammetric Data, pp 281–305

    Google Scholar 

  • Furukawa Y, Ponce J (2010) Accurate, dense, and robust multiview stereopsis. IEEE Trans Pattern Anal 32(8):1362–76

    Article  Google Scholar 

  • Gasteiger J, Wiegner M, Groß S, Freudenthaler V, Toledano C, Tesche M, Kandler K (2011) Modelling lidar-relevant optical properties of complex mineral dust aerosols. Tellus B 63(4):725–41

    Article  ADS  Google Scholar 

  • Goldstein JI, Newbury DE, Joy D, Lyman C, Echlin P, Lifshin E, Sawyer L, Michael J (2003) Scanning Electron Microscopy and X-Ray Microanalysis, 3rd edn. Kluwer Academic / Plenum Publishers, New York

    Book  Google Scholar 

  • Goodhew P, Humphreys J, Beanland R (2001) Electron Microscopy and Analysis, 3rd edn. Taylor & Francis group

    Google Scholar 

  • Haala N (2013). The landscape of dense image matching algorithms. In: Fritsch D (ed) Photogrammetric Week ’13, Wichmann, Berlin/Offenbach, pp 271–84

    Google Scholar 

  • Harris C, Stephens M (1988) A combined corner and edge detector. Alvey Vis Conf 147–51

    Google Scholar 

  • Heintzenberg J (2009) The SAMUM-1 experiment over Southern Morocco: overview and introduction. Tellus B 61(1):2–11

    Article  ADS  Google Scholar 

  • Hemmleb M, Albertz J, Schubert M, Gleichmann A, Köhler JM (1996) Digital microphotogrammetry with the scanning electron microscope. Int Arch Photogramm Remote Sensing XXXI, Part B5:225–30

    Google Scholar 

  • Hill SC, Hill AC, Barber PW (1984) Light scattering by size/shape distributions of soil particles and spheroids. Appl Opt 23(7):1025–31

    Article  ADS  Google Scholar 

  • Hirschmüller H (2008) Stereo processing by semiglobal matching and mutual information. IEEE Trans Pattern Anal 30:328–41

    Article  Google Scholar 

  • Ishimoto H, Zaizen Y, Uchiyama A, Masuda K, Mano Y (2010) Shape modeling of mineral dust particles for light-scattering calculations using the spatial Poisson-Voronoi tessellation. J Quant Spectrosc Radiat Transfer 111:2434–43

    Article  ADS  Google Scholar 

  • Jeong GY, Nousiainen T (2014) TEM analysis of the internal structures and mineralogy of Asian dust particles and the implications for optical modeling. Atmos Chem Phys 14:7233–54

    Article  ADS  Google Scholar 

  • Kadir T, Zisserman A, Brady M (2004) An affine invariant salient region detector. ECCV 404–16

    Google Scholar 

  • Kammerud CR (2005) Comparison of Microscopic Modalities for the 3D Model Reconstruction of Nanodevices. MSc Thesis, The University of Tennessee, Knoxville, 106 p

    Google Scholar 

  • Kandler K, Schütz L, Deutscher C, Hofmann H, Jäckel S, Knippertz P, Lieke K, Massling A, Schladitz A, Weinzierl B, Zorn S, Ebert M, Jaenicke R, Petzold A, Weinbruch S (2009) Size distribution, mass concentration, chemical and mineralogical composition, and derived optical parameters of the boundary layer aerosol at Tinfou, Morocco, during SAMUM 2006. Tellus B 61(1):32–50

    Article  ADS  Google Scholar 

  • Kannala J, Brandt SS (2007) Quasi-dense wide baseline matching using match propagation. CVPR, 1–8

    Google Scholar 

  • Kemppinen O, Nousiainen T, Lindqvist H (2015) The impact of surface roughness on scattering by realistically shaped wavelength-scale dust particles. J Quant Spectrosc Radiat Transfer 150C:55–67

    Article  ADS  Google Scholar 

  • Lacey AJ, Thacker NA, Crossley S, Yates RB (1998) A multi-stage approach to the dense estimation of disparity from stereo SEM images. Image Vision Comput 16(5):373–83

    Article  Google Scholar 

  • Lindqvist H (2013) Atmospheric Ice and Dust: From Morphological Modeling to Light Scattering. PhD Thesis, Finnish Meteorological Institute Contributions 102, 154 p

    Google Scholar 

  • Lindqvist H, Jokinen O, Kandler K, Scheuvens D, Nousiainen T (2014) Single scattering by realistic, inhomogeneous mineral dust particles with stereogrammetric shapes. Atmos Chem Phys 14:143–57

    Article  ADS  Google Scholar 

  • Liu C, Panetta RL, Yang P, Macke A, Baran AJ (2012) Modeling the scattering properties of mineral aerosols using concave fractal polyhedra. Appl Opt 52(4):640–52

    Article  ADS  Google Scholar 

  • Lowe D (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vision 60(2):91–110

    Article  Google Scholar 

  • Lucideon. http://www.ceram.com/testing-analysis/techniques/three-dimensional-scanning-electron-microscopy-3dsem. Accessed 17 March 2016

  • Matas J, Chum O, Urban M, Pajdla T (2002). Robust wide baseline stereo from maximally stable extremal regions. BMVC, 384–93

    Google Scholar 

  • Mikolajczyk K, Schmid C (2004) Scale and affine invariant interest point detectors. Int J Comput Vision 60(1):63–86

    Article  Google Scholar 

  • Mikolajczyk K, Schmid C (2005) A performance evaluation of local descriptors. IEEE Trans Pattern Anal 27(10):1615–30

    Article  Google Scholar 

  • Mikolajczyk K, Tuytelaars T, Schmid C, Zisserman A, Matas J, Schaffalitzky F, Kadir T, Van Gool L (2005) A comparison of affine region detectors. Int J Comput Vision 65(1/2):43–72

    Article  Google Scholar 

  • Mishchenko MI, Travis LD (1998) Capabilities and limitations of a current FORTRAN implementation of the T-matrix method for randomly oriented, rotationally symmetric scatterer. J Quant Spectrosc Radiat Transfer 60(3):309–24

    Article  ADS  Google Scholar 

  • Morgan M, Kim K, Jeong S, Habib A (2004) Indirect epipolar resampling of scenes using parallel projection modeling of linear array scanners. Int Arch Photogramm Remote Sensing XXXV, Part B3:58–63

    Google Scholar 

  • Muinonen K, Nousiainen T, Fast P, Lumme K, Peltoniemi JI (1996) Light scattering by Gaussian random particles: Ray optics approximation. J Quant Spectrosc Radiat Transfer 55(5):577–601

    Article  ADS  Google Scholar 

  • Muinonen K, Tyynelä J, Zubko E, Lindqvist H, Penttilä A, Videen G (2011) Polarization of light backscattered by small particles. J Quant Spectrosc Radiat Transfer 112(13):2193–212

    Article  ADS  Google Scholar 

  • Muñoz O, Volten H, Hovenier JW, Nousiainen T, Muinonen K, Guirado D, Moreno F, Waters LBFM (2007) Scattering matrix of large Saharan dust particles: experiments and computations. J Geophys Res 112:D13215

    Article  ADS  Google Scholar 

  • Nousiainen T, Kandler K (2015) Light scattering by atmospheric mineral dust particles. In: Kokhanovsky A(ed) Light Scattering Reviews, vol 9. Springer, Berlin, pp 3–52

    Google Scholar 

  • Nousiainen T, Zubko E, Niemi JV, Kupiainen K, Lehtinen M, Muinonen K, Videen G (2009) Single-scattering modeling of thin, birefringent mineral dust flakes using the discrete-dipole approximation. J Geophys Res 114:D07207

    Article  ADS  Google Scholar 

  • Nousiainen T, Muinonen K, Räisänen P (2003) Scattering of light by large Saharan dust particles in a modified ray optics approximation. J Geophys Res 108:4025

    Article  Google Scholar 

  • Piazzesi G (1973) Photogrammetry with the scanning electron microscope. J Phys E Sci Instrum 6(4):392–6

    Article  ADS  Google Scholar 

  • Remondino F, Spera MG, Nocerino E, Menna F, Nex F (2014) State of the art in high density image matching. Photogramm Rec 29(146):144–66

    Article  Google Scholar 

  • Remondino F, Zhang L (2006) Surface reconstruction algorithms for detailed close-range object modeling. Int Arch Photogramm Remote Sensing Spatial Inf Sci XXXVI, Part 3:117–23

    Google Scholar 

  • Richards RG, Wieland M, Textor M (2000) Advantages of stereo imaging of metallic surfaces with low voltage backscattered electrons in a field emission scanning electron microscope. J Microsc 199(2):115–23

    Article  Google Scholar 

  • Rothermel M, Wenzel K, Fritsch D, Haala N (2012). SURE: Photogrammetric surface reconstruction from imagery. In: Proceedings of the LC3D Workshop, Berlin

    Google Scholar 

  • Roy S, Meunier J, Marian AM, Vidal F, Brunette I, Costantino S (2012). Automatic 3D reconstruction of quasi-planar stereo Scanning Electron Microscopy (SEM) images. In: 34th Annual International Conference IEEE EMBS, pp 4361–4364

    Google Scholar 

  • Scheuvens D, Kandler K, Küpper M, Lieke K, Zorn SR, Ebert M, Schütz L, Weinbruch S (2011) Individual-particle analysis of airborne dust samples collected over Morocco in 2006 during SAMUM 1. Tellus B 63(4):512–30

    Article  ADS  Google Scholar 

  • Schultz MA (2004) Multiple View 3D Reconstruction of Micro- to Nano-Scopic Specimens. MSc Thesis, The University of Tennessee, Knoxville, 122 p

    Google Scholar 

  • Themelis G, Chikwembani S, Weertman J (1990) Determination of the orientation of Cu-Bi grain boundary facets using a photogrammetric technique. Mater Charact 24:27–40

    Article  Google Scholar 

  • Tuytelaars T, Van Gool L (2004) Matching widely separated views based on affine invariant regions. Int J Comput Vision 59(1):61–85

    Article  Google Scholar 

  • Veihelmann B, Nousiainen T, Kahnert M, van der Zande WJ (2006) Light scattering by small feldspar particles simulated using the Gaussian random sphere geometry. J Quant Spectrosc Radiat Transfer 100:393–405

    Article  ADS  Google Scholar 

  • Vijendran S, Sykulska H, Pike WT (2007) AFM investigation of Martian soil simulants on micromachined Si substrates. J Microsci 227(3):236–45

    Article  MathSciNet  Google Scholar 

  • Woodward X (2014) The Three Dimensional Shape and Roughness of Mineral Dust. Master’s report, Michigan Technological University, 20 p

    Google Scholar 

  • Ylimäki M, Kannala J, Holappa J, Heikkilä J, Brandt SS (2012) Robust and accurate multi-view reconstruction by prioritized matching. In: Proceedings of the 21st International Conference Pattern Recognition, pp 2673–6

    Google Scholar 

  • Yurkin MA, Hoekstra AG (2011) The discrete-dipole approximation code ADDA: capabilities and known limitations. J Quant Spectrosc Radiat Transfer 112(13):2234–47

    Article  ADS  Google Scholar 

  • Zeiss. http://www.zeiss.com/microscopy/en_de/products/scanning-electron-microscopes/upgrades/3d-surface-modelling.html. Accessed 17 March 2016

  • Zhang Z (1994) Iterative point matching for registration of free-form curves and surfaces. Int J Comput Vision 13(2):119–52

    Article  Google Scholar 

  • Zolotukhin AA, Safonov IV, Kryzhanovskii KA (2013) 3D reconstruction for a scanning electron microscope. Pattern Recogn Image Anal 23(1):168–74

    Article  Google Scholar 

  • Zubko E, Muinonen K, Muñoz O, Nousiainen T, Shkuratov Y, Sun W, Videen G (2013) Light scattering by feldspar particles: comparison of model agglomerate debris particles with laboratory samples. J Quant Spectrosc Radiat Transfer 131:175–87

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olli Jokinen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jokinen, O., Lindqvist, H., Kandler, K., Kemppinen, O., Nousiainen, T. (2018). Stereogrammetric Shapes of Mineral Dust Particles. In: Kokhanovsky, A. (eds) Springer Series in Light Scattering. Springer Series in Light Scattering. Springer, Cham. https://doi.org/10.1007/978-3-319-70796-9_5

Download citation

Publish with us

Policies and ethics