Skip to main content

Mathematical Modelling and Numerical Simulation

  • Chapter
  • First Online:
Proton Exchange Membrane Fuel Cells
  • 1875 Accesses

Abstract

In this chapter, analytical models and effects of operation parameters on the performance of PEM fuel cells are presented. This was carried out taking account of semi-empirical, one-, two- and three-dimensional modelling methods. Critical analysis of the performance of each modelling methods is included, and the effectiveness of those algorithms is experimentally verified using scaled PEM fuel cell experimental set-up.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mazumder, S., & Cole, J. V. (2003). Rigorous 3-D mathematical modelling of PEM fuel cells II. Model predictions with liquid water transport. Journal of the Electrochemical Society, 150(11), A1510–A1517.

    Article  Google Scholar 

  2. Pasaogullari, U., & Wang, C. Y. (2005). Two-phase modelling and flooding prediction of polymer electrolyte fuel cells. Journal of the Electrochemical Society, 152(2), A380–A390.

    Article  Google Scholar 

  3. Spiegel, C. (2011). PEM fuel cell modeling and simulation using MATLAB. Burlington USA: Academic press. ISBN: 978-0-12-374259-9.

    Google Scholar 

  4. Alrweq, M., Albarbar, A. (2016). Investigation into the characteristics of proton exchange membrane fuel cell-based power system IET science, measurement & technology. doi:https://doi.org/10.1049/iet-smt.2015.0046, Online ISSN 1751–8830.

  5. Milewski, J., Åšwirski, K., Santarelli, M. and Leone, P., 2011. Advanced methods of solid oxide fuel cell modeling. Springer Science & Business Media.

    Book  Google Scholar 

  6. Al-Baghdadi, M. A. (2010). CFD modeling and analysis of different novel designs of air-breathing PEM fuel cells. New York: Nova Science Publishers.

    Google Scholar 

  7. Bavarian, M., Soroush, M., Kevrekidis, I. G., & Benziger, J. B. (2010). Mathematical modelling, steady-state and dynamic behaviour, and control of fuel cells: A review†. Industrial & Engineering Chemistry Research, 49(17), 7922–7950.

    Article  Google Scholar 

  8. Andersson, M., Yuan, J., & Sundén, B. (2010). Review on modelling development for multiscale chemical reactions coupled transport phenomena in solid oxide fuel cells. Applied Energy, 87(5), 1461–1476.

    Article  Google Scholar 

  9. Vasile, N. S., Doherty, R., Videla, A. H. M., & Specchia, S. (2016). 3D multi-physics modeling of a gas diffusion electrode for oxygen reduction reaction for electrochemical energy conversion in PEM fuel cells. Applied Energy, 175, 435–450.

    Article  Google Scholar 

  10. Al-Masri, A., Peksen, M., Blum, L., & Stolten, D. (2014). A 3D CFD model for predicting the temperature distribution in a full scale APU SOFC short stack under transient operating conditions. Applied Energy, 135, 539–547.

    Article  Google Scholar 

  11. Abdollahzadeh, M., Pascoa, J. C., Ranjbar, A. A., & Esmaili, Q. (2014). Analysis of PEM (polymer electrolyte membrane) fuel cell cathode two-dimensional modeling. Energy, 68, 478–494.

    Article  Google Scholar 

  12. Siegel, C. (2008). Review of computational heat and mass transfer modelling in polymer-electrolyte-membrane (PEM) fuel cells. Energy, 33(9), 1331–1352.

    Article  Google Scholar 

  13. Liu, Y., Lehnert, W., Janßen, H., Samsun, R. C., & Stolten, D. (2016). A review of high-temperature polymer electrolyte membrane fuel-cell (HT-PEM FUEL CELL)-based auxiliary power units for diesel-powered road vehicles. Journal of Power Sources, 311, 91–102.

    Article  Google Scholar 

  14. Hutzenlaub, T., Becker, J., Zengerle, R., & Thiele, S. (2013). Modelling the water distribution within a hydrophilic and hydrophobic 3D reconstructed cathode catalyst layer of a proton exchange membrane fuel cell. Journal of Power Sources, 227, 260–266.

    Article  Google Scholar 

  15. Carton, J. G., Lawlor, V., Olabi, A. G., Hochenauer, C., & Zauner, G. (2012). Water droplet accumulation and motion in PEM (proton exchange membrane) fuel cell mini-channels. Energy, 39(1), 63–73.

    Article  Google Scholar 

  16. Wang, X., & Van Nguyen, T. (2010). Modelling the effects of the microporous layer on the net water transport rate across the membrane in a PEM fuel cell. Journal of the Electrochemical Society, 157(4), B496–B505.

    Article  Google Scholar 

  17. Liu, F., Lu, G., & Wang, C. Y. (2007). Water transport coefficient distribution through the membrane in a polymer electrolyte fuel cell. Journal of Membrane Science, 287(1), 126–131.

    Article  Google Scholar 

  18. Das, P. K., Li, X., & Liu, Z. S. (2010). Analysis of liquid water transport in cathode catalyst layer of PEM fuel cells. International Journal of Hydrogen Energy, 35(6), 2403–2416.

    Article  Google Scholar 

  19. Lu, Z., Rath, C., Zhang, G., & Kandlikar, S. G. (2011). Water management studies in PEM fuel cells, part IV: Effects of channel surface wettability, geometry and orientation on the two-phase flow in parallel gas channels. International Journal of Hydrogen Energy, 36(16), 9864–9875.

    Article  Google Scholar 

  20. Grimm, M., See, E. J., & Kandlikar, S. G. (2012). Modelling gas flow in PEM FUEL CELL channels: Part I–flow pattern transitions and pressure drop in a simulated ex situ channel with uniform water injection through the GDL. International Journal of Hydrogen Energy, 37(17), 12489–12503.

    Article  Google Scholar 

  21. Gao, F., Blunier, B., Simoes, M. G., & Miraoui, A. (2011). PEM fuel cell stack modelling for real-time emulation in hardware-in-the-loop applications. IEEE Transactions on Energy Conversion, 26(1), 184–194.

    Article  Google Scholar 

  22. Wang, Y., Chen, K. S., Mishler, J., Cho, S. C., & Adroher, X. C. (2011). A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research. Applied Energy, 88(4), 981–1007.

    Article  Google Scholar 

  23. Lobato, J., Cañizares, P., Rodrigo, M. A., Pinar, F. J., Mena, E., & Úbeda, D. (2010). Three-dimensional model of a 50 cm 2 high temperature PEM fuel cell. Study of the flow channel geometry influence. International Journal of Hydrogen Energy, 35(11), 5510–5520.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Albarbar, A., Alrweq, M. (2018). Mathematical Modelling and Numerical Simulation. In: Proton Exchange Membrane Fuel Cells. Springer, Cham. https://doi.org/10.1007/978-3-319-70727-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70727-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70726-6

  • Online ISBN: 978-3-319-70727-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics